In situ visualization of loading-dependent water effects in a stable metal–organic framework

Abstract

Competitive water adsorption can have a significant impact on metal–organic framework performance properties, ranging from occupying active sites in catalytic reactions to co-adsorbing at the most favourable adsorption sites in gas separation and storage applications. In this study, we investigate, for a metal–organic framework that is stable after moisture exposure, what are the reversible, loading-dependent structural changes that occur during water adsorption. Herein, a combination of in situ synchrotron powder and single-crystal diffraction, infrared spectroscopy and molecular modelling analysis was used to understand the important role of loading-dependent water effects in a water stable metal–organic framework. Through this analysis, insights into changes in crystallographic lattice parameters, water siting information and water-induced defect structure as a response to water loading were obtained. This work shows that, even in stable metal–organic frameworks that maintain their porosity and crystallinity after moisture exposure, important molecular-level structural changes can still occur during water adsorption due to guest–host interactions such as water-induced bond rearrangements.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: In situ synchrotron powder diffraction experiments.
Fig. 2: Water-induced structural changes.
Fig. 3: Defect structures.
Fig. 4: Water siting, microstrain and Young’s modulus analysis.

Data availability

Data supporting the claims and findings of this paper are available within the Supplementary Information or are available upon request from the corresponding author. Crystallographic data for all structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre (CCDC), CCDC numbers 1864840 (DMOF-TM_crystal 09_Flow_01), 1864836 (DMOF-TM_crystal 09_Flow_02), 1864833 (DMOF-TM_crystal 09_Flow_03), 1864842 (DMOF-TM_crystal 09_Flow_04), 1864834 (DMOF-TM_crystal 09_Flow_05), 1864835 (DMOF-TM_crystal 09_Flow_06), 1864838 (DMOF-TM_crystal 09_Flow_07), 1864837 (DMOF-TM_crystal 09_Flow_08), 1864839 (DMOF-TM_crystal 09, static) and 1864841 (DMOF-1, crystal 15, static; where crystal 09 and crystal 15 were both selected from the same batch). Copies of the crystallographic data can be obtained at https://www.ccdc.cam.ac.uk/structures/ free of charge. A SCXRD structure of the ‘activated’ DMOF-TM structure could not be obtained; unit cell parameters and atomic positions were obtained by Rietveld refinement, refined to the SCXRD data from this study (P4/nbm) and also to the structure previously reported for this material (P4/mmm).

References

  1. 1.

    Zhou, H.-C., Long, J. R. & Yaghi, O. M. Introduction to metal–organic frameworks. Chem. Rev. 112, 673–674 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Kreno, L. E. et al. Metal–organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012).

    CAS  PubMed  Google Scholar 

  4. 4.

    Stassen, I. et al. An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 46, 3185–3241 (2017).

    CAS  PubMed  Google Scholar 

  5. 5.

    Nilsson, A. & Pettersson, L. G. M. The structural origin of anomalous properties of liquid water. Nat. Commun. 6, 8998 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Burtch, N. C., Jasuja, H. & Walton, K. S. Water stability and adsorption in metal–organic frameworks. Chem. Rev. 114, 10575–10612 (2014).

    CAS  PubMed  Google Scholar 

  7. 7.

    Bosch, M., Zhang, M. & Zhou, H. Increasing the stability of metal–organic frameworks. Adv. Chem. 2014, 1–8 (2014).

    Google Scholar 

  8. 8.

    Howarth, A. J. et al. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016).

    CAS  Google Scholar 

  9. 9.

    Canivet, J., Fateeva, A., Guo, Y., Coasne, B. & Farrusseng, D. Water adsorption in MOFs: fundamentals and applications. Chem. Soc. Rev. 43, 5594–5617 (2014).

    CAS  PubMed  Google Scholar 

  10. 10.

    Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nat. Chem. 1, 695–704 (2009).

    CAS  PubMed  Google Scholar 

  11. 11.

    Schneemann, A. et al. Flexible metal–organic frameworks. Chem. Soc. Rev. 43, 6062–6096 (2014).

    CAS  PubMed  Google Scholar 

  12. 12.

    Zeng, M. H. et al. Apical ligand substitution, shape recognition, vapor-adsorption phenomenon, and microcalorimetry for a pillared bilayer porous framework that shrinks or expands in crystal-to-crystal manners upon change in the cobalt(II) coordination environment. Inorg. Chem. 48, 7070–7079 (2009).

    CAS  PubMed  Google Scholar 

  13. 13.

    Bennett, T. D., Cheetham, A. K., Fuchs, A. H. & Coudert, F.-X. Interplay between defects, disorder and flexibility in metal–organic frameworks. Nat. Chem. 9, 11–16 (2017).

    CAS  Google Scholar 

  14. 14.

    Sholl, D. S. & Lively, R. P. Defects in metal–organic frameworks: challenge or opportunity? J. Phys. Chem. Lett. 6, 3437–3444 (2015).

    CAS  PubMed  Google Scholar 

  15. 15.

    Fang, Z., Bueken, B., De Vos, D. E. & Fischer, R. A. Defect-engineered metal–organic frameworks. Angew. Chem. Int. Ed. 54, 7234–7254 (2015).

    CAS  Google Scholar 

  16. 16.

    Trickett, C. A. et al. Definitive molecular level characterization of defects in UiO-66 crystals. Angew. Chem. Int. Ed. 54, 11162–11167 (2015).

    CAS  Google Scholar 

  17. 17.

    Chun, H., Dybtsev, D. N., Kim, H. & Kim, K. Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials. Chem. Eur. J. 11, 3521–3529 (2005).

    CAS  PubMed  Google Scholar 

  18. 18.

    Dybtsev, D. N., Chun, H. & Kim, K. Rigid and flexible: a highly porous metal–organic framework with unusual guest-dependent dynamic behavior. Angew. Chem. Int. Ed. 43, 5033–5036 (2004).

    CAS  Google Scholar 

  19. 19.

    Burtch, N. C. & Walton, K. S. Modulating adsorption and stability properties in pillared metal−organic frameworks: a model system for understanding ligand effects. Acc. Chem. Res. 48, 2850–2857 (2015).

    CAS  PubMed  Google Scholar 

  20. 20.

    Jasuja, H., Burtch, N. C., Huang, Y., Cai, Y. & Walton, K. S. Kinetic water stability of an isostructural family of zinc-based pillared metal–organic frameworks. Langmuir 29, 633–642 (2013).

    CAS  PubMed  Google Scholar 

  21. 21.

    Jasuja, H., Jiao, Y., Burtch, N. C., Huang, Y. & Walton, K. S. Synthesis of cobalt-, nickel -, copper -, and zinc-based, water-stable, pillared metal−organic frameworks. Langmuir 30, 14300–14307 (2014).

    CAS  PubMed  Google Scholar 

  22. 22.

    Lu, W. et al. Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev. 43, 5561–5593 (2014).

    CAS  PubMed  Google Scholar 

  23. 23.

    Pecharsky, V. K. & Zavalij, P. Y. Fundamentals of Powder Diffraction and Structural Characterization of Materials Vol. 69 (Springer, 2009).

  24. 24.

    Mittemeijer, E. J. & Welzel, U. The “state of the art” of the diffraction analysis of crystallite size and lattice strain. Z. Kristallogr. 223, 552–560 (2008).

    CAS  Google Scholar 

  25. 25.

    Gor, G. Y., Huber, P. & Bernstein, N. Adsorption-induced deformation of nanoporous materials—a review. Appl. Phys. Rev. 4, 011303 (2017).

    Google Scholar 

  26. 26.

    Pawley, G. S. Unit-cell refinement from powder diffraction scans. J. Appl. Crystallogr. 14, 357–361 (1981).

    CAS  Google Scholar 

  27. 27.

    Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71 (1969).

    CAS  Google Scholar 

  28. 28.

    Ravikovitch, P. I. & Neimark, A. V. Density functional theory model of adsorption deformation. Langmuir 22, 10864–10868 (2006).

    CAS  PubMed  Google Scholar 

  29. 29.

    Moggach, S. A., Bennett, T. D. & Cheetham, A. K. The effect of pressure on ZIF-8: increasing pore size with pressure and the formation of a high-pressure phase at 1.47 GPa. Angew. Chem. Int. Ed. 121, 7221–7223 (2009).

    Google Scholar 

  30. 30.

    Hobday, C. L. et al. Understanding the adsorption process in ZIF-8 using high pressure crystallography and computational modelling. Nat. Commun. 9, 1429 (2018).

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Burtch, N. C. et al. Understanding DABCO nanorotor dynamics in isostructural metal–organic frameworks. J. Phys. Chem. Lett. 6, 812–816 (2015).

    CAS  PubMed  Google Scholar 

  32. 32.

    Cox, J. M. et al. Solvent exchange in a metal–organic framework single crystal monitored by dynamic in situ X-ray diffraction. Acta Crystallogr. B 73, 669–674 (2017).

    CAS  Google Scholar 

  33. 33.

    Cox, J. M., Walton, I. M., Benson, C. A., Chen, Y.-S. & Benedict, J. B. A versatile environmental control cell for in situ guest exchange single-crystal diffraction. J. Appl. Crystallogr. 48, 578–581 (2015).

    CAS  Google Scholar 

  34. 34.

    Yakovenko, A. A. et al. Study of guest molecules in metal–organic frameworks by powder X-ray diffraction: analysis of difference envelope density. Cryst. Growth Des. 14, 5397–5407 (2014).

    CAS  Google Scholar 

  35. 35.

    Chen, Y.-P., Liu, Y., Liu, D., Bosch, M. & Zhou, H.-C. Direct measurement of adsorbed gas redistribution in metal–organic frameworks. J. Am. Chem. Soc. 137, 2919–2930 (2015).

    CAS  PubMed  Google Scholar 

  36. 36.

    Tan, J. C. & Cheetham, A. K. Mechanical properties of hybrid inorganic–organic framework materials: establishing fundamental structure–property relationships. Chem. Soc. Rev. 40, 1059–1080 (2011).

    CAS  PubMed  Google Scholar 

  37. 37.

    Burtch, N. C., Heinen, J., Bennett, T. D., Dubbeldam, D. & Allendorf, M. D. Mechanical properties in metal–organic frameworks: emerging opportunities and challenges for device functionality and technological applications. Adv. Mater. 30, 1704124 (2018).

    Google Scholar 

  38. 38.

    Petkov, P. S. et al. Conformational isomerism controls collective flexibility in metal–organic framework DUT-8 (Ni). Phys. Chem. Chem. Phys. 21, 674–680 (2019).

    CAS  PubMed  Google Scholar 

  39. 39.

    Chupas, P. J. et al. A versatile sample-environment cell for non-ambient X-ray scattering experiments. Appl. Crystallogr. 41, 822–824 (2008).

    CAS  Google Scholar 

  40. 40.

    Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013).

    CAS  Google Scholar 

  41. 41.

    Dubbeldam, D., Calero, S., Ellis, D. E. & Snurr, R. Q. RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. 42, 81–101 (2016).

    CAS  Google Scholar 

  42. 42.

    Burtch, N. C., Dubbeldam, D. & Walton, K. S. Investigating water and framework dynamics in pillared MOFs. Mol. Simul. 41, 1379–1387 (2015).

    CAS  Google Scholar 

  43. 43.

    Gaillac, R., Pullumbi, P. & Coudert, F.-X. ELATE: an open-source online application for analysis and visualization of elastic tensors. J. Phys. Condens. Matter 28, 275201 (2016).

    PubMed  Google Scholar 

  44. 44.

    Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported as a part of the Center for Understanding and Control of Acid Gas-Induced Evolution of Materials for Energy, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under award no. DE-SC0012577. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. N.C.B. acknowledges support from the National Science Foundation Graduate Research Fellowship and the Graduate Research Opportunities Worldwide (GROW) award under grant no. DGE-1148903. D.D. acknowledges support from the Netherlands Research Council for Chemical Sciences through a VIDI grant and the Dutch Research Council (NWO) Exacte Wetenschappen (Physical Sciences) for the use of supercomputer facilities with financial support from the NWO. NSF’s ChemMatCARS Sector 15 is supported by the Divisions of Chemistry (CHE) and Materials Research (DMR), National Science Foundation, under grant no. NSF/CHE- 1834750. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy Office of Science by Argonne National Laboratory, was supported by the US Department of Energy under contract no. DE-AC02-06CH11357.

Author information

Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper. N.C.B., C.R.M., Y.J. and J.T.H. performed the powder synthesis and adsorption characterization work, and C.R.M. led the synchrotron diffraction analysis with help from N.C.B., A.A.Y. and W.X. The computational studies were performed by N.C.B., J.H. and D.D. SCXRD experiments and analysis were led by I.M.W. with assistance from Y.-S.C. and J.T.H. IR spectroscopy experiments and analysis were performed by J.T.H. and I.M.W. The manuscript was written by N.C.B., I.M.W and K.S.W. with input from the other authors.

Corresponding author

Correspondence to Krista S. Walton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Sample synthesis and preparation; characterization; molecular dynamics simulations; theoretical defects calculations; Supplementary Figures 1–46; references 1–33.

Crystallographic data

CIF for DMOF-TM, crystal 09, Flow 1; CCDC reference 1864840

Crystallographic data

Structure factors for DMOF-TM, crystal 09, Flow 1; CCDC reference 1864840

Crystallographic data

CIF for DMOF-TM, crystal 09, Flow 2; CCDC reference 1864836

Crystallographic data

Structure factors for DMOF-TM, crystal 09, Flow 2; CCDC reference 1864836

Crystallographic data

CIF for DMOF-TM, crystal 09, Flow 3; CCDC reference 1864833

Crystallographic data

Structure factors for DMOF-TM, crystal 09, Flow 3; CCDC reference 1864833

Crystallographic data

CIF for DMOF-TM, crystal 09, Flow 4; CCDC reference 1864842

Crystallographic data

Structure factors for DMOF-TM, crystal 09, Flow 4; CCDC reference 1864842

Crystallographic data

CIF for DMOF-TM, crystal 09, Flow 5; CCDC reference 1864834

Crystallographic data

Structure factors for DMOF-TM, crystal 09, Flow 5; CCDC reference 1864834

Crystallographic data

CIF for DMOF-TM, crystal 09, Flow 6; CCDC reference 1864835

Crystallographic data

Structure factors for DMOF-TM, crystal 09, Flow 6; CCDC reference 1864835

Crystallographic data

CIF for DMOF-TM, crystal 09, Flow 7; CCDC reference 1864838

Crystallographic data

Structure factors for DMOF-TM, crystal 09, Flow 7; CCDC reference 1864838

Crystallographic data

CIF for DMOF-TM, crystal 09, Flow 8; CCDC reference 1864837

Crystallographic data

Structure factors for DMOF-TM, crystal 09, Flow 8; CCDC reference 1864837

Crystallographic data

CIF for DMOF-TM, crystal 09, Static; CCDC reference 1864839

Crystallographic data

Structure factors for DMOF-TM, crystal 09, Static; CCDC reference 1864839

Crystallographic data

CIF for DMOF-TM, crystal 15, Static; CCDC reference 1864841

Crystallographic data

Structure factors for DMOF-TM, crystal 15, Static; CCDC reference 1864841

Crystallographic data

CIF for the activated DMOF-TM, refined to P4/nbm

Crystallographic data

CIF for the activated DMOF-TM, refined to P4/mmm

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burtch, N.C., Walton, I.M., Hungerford, J.T. et al. In situ visualization of loading-dependent water effects in a stable metal–organic framework. Nat. Chem. 12, 186–192 (2020). https://doi.org/10.1038/s41557-019-0374-y

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing