Efficient and tunable one-dimensional charge transport in layered lanthanide metal–organic frameworks


The emergence of electrically conductive metal–organic frameworks (MOFs) has led to applications in chemical sensing and electrical energy storage, among others. The most conductive MOFs are made from organic ligands and square-planar transition metal ions connected into two-dimensional (2D) sheets stacked on top of each other. Their electrical properties are thought to depend critically on the covalency of the metal–ligand bond, and less importance is given to out-of-plane charge transport. Here, we report a series of lanthanide-based MOFs that allow fine tuning of the sheet stacking. In these materials, the Ln3+ ions lie between the planes of the ligands, thus connecting organic layers into a 3D framework through lanthanide–oxygen chains. Here, efficient charge transport is found to occur primarily perpendicular to the 2D sheets. These results demonstrate that high conductivity in layered MOFs does not necessarily require a metal–ligand bond with highly covalent character, and that interactions between organic ligands alone can produce efficient charge transport pathways.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Structure of NdHHTP.
Fig. 2: Electronic band structure and DOS of LaHHTP.
Fig. 3: Diffuse reflectance spectra for LnHHTP (Ln = La, Nd, Ho and Yb).
Fig. 4: Electrical conductivity of LnHHTP (Ln = Yb, Ho, Nd and La).

Data availability

Crystallographic information obtained by Rietveld refinement of PXRD data has been deposited in the Cambridge Crystallographic Data Centre under accession codes CCDC 1874834 (NdHHTP) and CCDC 1874835 (YbHHTP). All other data supporting the findings of this study are available within the article and its Supplementary Information, or from the corresponding author upon reasonable request.


  1. 1.

    Sheberla, D. et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16, 220–224 (2016).

    PubMed  Google Scholar 

  2. 2.

    Feng, D. et al. Robust and conductive two-dimensional metal–organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 3, 30–36 (2018).

    CAS  Google Scholar 

  3. 3.

    Wada, K., Sakaushi, K., Sasaki, S. & Nishihara, H. Multielectron-transfer-based rechargeable energy storage of two-dimensional coordination frameworks with non-innocent ligands. Angew. Chem. Int. Ed. 57, 8886–8890 (2018).

    CAS  Google Scholar 

  4. 4.

    Erickson, K. J. et al. Thin film thermoelectric metal–organic framework with high Seebeck coefficient and low thermal conductivity. Adv. Mater. 27, 3453–3459 (2015).

    CAS  PubMed  Google Scholar 

  5. 5.

    Smith, M. K. & Mirica, K. A. Self-organized frameworks on textiles (SOFT): conductive fabrics for simultaneous sensing, capture and filtration of gases. J. Am. Chem. Soc. 139, 16759–16767 (2017).

    CAS  PubMed  Google Scholar 

  6. 6.

    Campbell, M. G., Sheberla, D., Liu, S. F., Swager, T. M. & Dincă, M. Cu3(hexaiminotriphenylene)2: an electrically conductive 2D metal–organic framework for chemiresistive sensing. Angew. Chem. Int. Ed. 54, 4349–4352 (2015).

    CAS  Google Scholar 

  7. 7.

    Miner, E. M. et al. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2. Nat. Commun. 7, 10942 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Miner, E. M. et al. Mechanistic evidence for ligand-centered electrocatalytic oxygen reduction with the conductive MOF Ni3(hexaiminotriphenylene)2. ACS Catal. 7, 7726–7731 (2017).

    CAS  Google Scholar 

  9. 9.

    Miner, E. M., Wang, L. & Dincă, M. Modular O2 electroreduction activity in triphenylene-based metal–organic frameworks. Chem. Sci. 9, 6286–6291 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Clough, A. J., Yoo, J. W., Mecklenburg, M. H. & Marinescu, S. C. Two-dimensional metal–organic surfaces for efficient hydrogen evolution from water. J. Am. Chem. Soc. 137, 118–121 (2015).

    CAS  PubMed  Google Scholar 

  11. 11.

    Sun, L., Campbell, M. G. & Dincă, M. Electrically conductive porous metal–organic frameworks. Angew. Chem. Int. Ed. 55, 3566–3579 (2016).

    CAS  Google Scholar 

  12. 12.

    Stassen, I. et al. An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 46, 3185–3241 (2017).

    CAS  Google Scholar 

  13. 13.

    Huang, X. et al. Superconductivity in a copper(ii)-based coordination polymer with perfect kagome structure. Angew. Chem. Int. Ed. 57, 146–150 (2018).

    CAS  Google Scholar 

  14. 14.

    Sheberla, D. et al. High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal–organic graphene analogue. J. Am. Chem. Soc. 136, 8859–8862 (2014).

    CAS  PubMed  Google Scholar 

  15. 15.

    Dou, J.-H. et al. Signature of metallic behavior in the metal–organic frameworks M3(hexaiminobenzene)2 (M = Ni, Cu). J. Am. Chem. Soc. 139, 13608–13611 (2017).

    CAS  PubMed  Google Scholar 

  16. 16.

    Kambe, T. et al. Redox control and high conductivity of nickel bis(dithiolene) complex π-nanosheet: a potential organic two-dimensional topological insulator. J. Am. Chem. Soc. 136, 14357–14360 (2014).

    CAS  PubMed  Google Scholar 

  17. 17.

    Hmadeh, M. et al. New porous crystals of extended metal-catecholates. Chem. Mater. 24, 3511–3513 (2012).

    CAS  Google Scholar 

  18. 18.

    Ko, M., Mendecki, L. & Mirica, K. A. Conductive two-dimensional metal–organic frameworks as multifunctional materials. Chem. Commun. 54, 7873–7891 (2018).

    CAS  Google Scholar 

  19. 19.

    Smith, M. K., Jensen, K. E., Pivak, P. A. & Mirica, K. A. Direct self-assembly of conductive nanorods of metal–organic frameworks into chemiresistive devices on shrinkable polymer films. Chem. Mater. 28, 5264–5268 (2016).

    CAS  Google Scholar 

  20. 20.

    Clough, A. J. et al. Metallic conductivity in a two-dimensional cobalt dithiolene metal–organic framework. J. Am. Chem. Soc. 139, 10863–10867 (2017).

    CAS  PubMed  Google Scholar 

  21. 21.

    Ziebel, M. E., Darago, L. E. & Long, J. R. Control of electronic structure and conductivity in two-dimensional metal–semiquinoid frameworks of titanium, vanadium and chromium. J. Am. Chem. Soc. 140, 3040–3051 (2018).

    CAS  PubMed  Google Scholar 

  22. 22.

    Yaghi, O. M., Gandara-Barragan, F., Lu, Z. & Wan, S. Preparation of metal-catecholate frameworks. US patent 8,742,152 B2 (2014).

  23. 23.

    Cotton, S. A. Lanthanide and Actinide Chemistry (Wiley, 2006).

  24. 24.

    Shannon, R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).

    Article  Google Scholar 

  25. 25.

    Xie, L. S. et al. Tunable mixed-valence doping toward record electrical conductivity in a three-dimensional metal–organic framework. J. Am. Chem. Soc. 140, 7411–7414 (2018).

    CAS  PubMed  Google Scholar 

  26. 26.

    Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969).

    CAS  Google Scholar 

  27. 27.

    Barrett, E. P., Joyner, L. G. & Halenda, P. P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373–380 (1951).

    CAS  Google Scholar 

  28. 28.

    Brunauer, S., Emmett, P. H. & Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938).

    CAS  Google Scholar 

  29. 29.

    Wu, B., Zinkevich, M., Aldinger, F., Wen, D. & Chen, L. Ab initio study on structure and phase transition of A- and B-type rare-earth sesquioxides Ln2O3 (Ln = La–Lu, Y and Sc) based on density function theory. J. Solid State Chem. 180, 3280–3287 (2007).

    CAS  Google Scholar 

  30. 30.

    Pawley, G. S. Unit-cell refinement from powder diffraction scans. J. Appl. Crystallogr. 14, 357–361 (1981).

    CAS  Google Scholar 

  31. 31.

    Trucano, P. & Chen, R. Structure of graphite by neutron diffraction. Nature 258, 136–137 (1975).

    CAS  Google Scholar 

  32. 32.

    Hoffmann, R. How chemistry and physics meet in the solid state. Angew. Chem. Int. Ed. 26, 846–878 (1987).

    Google Scholar 

  33. 33.

    Kittel, C. Introduction to Solid State Physics (Wiley, 2004).

  34. 34.

    Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37–46 (1968).

    CAS  Google Scholar 

  35. 35.

    Grange, C. S., Meijer, A. J. H. M. & Ward, M. D. Trinuclear ruthenium dioxolene complexes based on the bridging ligand hexahydroxytriphenylene: electrochemistry, spectroscopy and near-infrared electrochromic behaviour associated with a reversible seven-membered redox chain. Dalton Trans. 39, 200–211 (2010).

    CAS  Google Scholar 

  36. 36.

    Welber, B., Cardona, M., Kim, C. K. & Rodriguez, S. Dependence of the direct energy gap of GaAs on hydrostatic pressure. Phys. Rev. B 12, 5729–5738 (1975).

    CAS  Google Scholar 

  37. 37.

    Müller, H., Trommer, R., Cardona, M. & Vogl, P. Pressure dependence of the direct absorption edge of InP. Phys. Rev. B 21, 4879–4883 (1980).

    Google Scholar 

  38. 38.

    Balslev, I. Influence of uniaxial stress on the indirect absorption edge in silicon and germanium. Phys. Rev. 143, 636–647 (1966).

    CAS  Google Scholar 

  39. 39.

    Nabi, Z., Abbar, B., Méçabih, S., Khalfi, A. & Amrane, N. Pressure dependence of band gaps in PbS, PbSe and PbTe. Comput. Mater. Sci. 18, 127–131 (2000).

    CAS  Google Scholar 

  40. 40.

    Sun, L., Park, S. S., Sheberla, D. & Dincă, M. Measuring and reporting electrical conductivity in metal–organic frameworks: Cd2(TTFTB) as a case study. J. Am. Chem. Soc. 138, 14772–14782 (2016).

    CAS  PubMed  Google Scholar 

  41. 41.

    DeGayner, J. A., Jeon, I.-R., Sun, L., Dincă, M. & Harris, T. D. 2D conductive iron-quinoid magnets ordering up to T c = 105 K via heterogenous redox chemistry. J. Am. Chem. Soc. 139, 4175–4184 (2017).

    CAS  PubMed  Google Scholar 

  42. 42.

    Foster, M. E., Sohlberg, K., Allendorf, M. D. & Talin, A. A. Unraveling the semiconducting/metallic discrepancy in Ni3(HITP)2. J. Phys. Chem. Lett. 9, 481–486 (2018).

    CAS  PubMed  Google Scholar 

  43. 43.

    Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    PubMed  Google Scholar 

  44. 44.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  45. 45.

    Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    PubMed  Google Scholar 

  46. 46.

    Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    CAS  PubMed  Google Scholar 

  47. 47.

    Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    CAS  Google Scholar 

Download references


This work was supported by the Army Research Office (grant no. W911NF-17-1-0174). Computational work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the NSF (ACI-1053575). This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. This work was performed in part at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Coordinated Infrastructure Network, which is supported by the National Science Foundation under NSF award no. 1541959. CNS is part of Harvard University. We thank the staff of 17-BM for help with synchrotron X-ray data collectio, R.W. Day and L. Sun for assistance with SEM, T. Chen for assistance with NMR spectroscopy and I. Stassen, M.Q. Arguilla and L.S. Xie for helpful discussions.

Author information




G.S. and M.D. planned and designed the experiments. G.S. executed the syntheses, chemical, spectroscopic and electrical characterization. G.S., B.A.T. and C.M.B. collected and analysed the PXRD data. T.W.K. and C.H.H. performed the DFT studies. All authors were involved in the writing of the manuscript and have given consent to this publication.

Corresponding author

Correspondence to Mircea Dincă.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Additional synthesis and characterization data, Supplementary Tables 1–2, Figs. 1–48 and refs. 1–21.

Crystallographic data

CIF for NdHHTP; CCDC reference 1874834.

Crystallographic data

CIF for YbHHTP; CCDC reference 1874835.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Skorupskii, G., Trump, B.A., Kasel, T.W. et al. Efficient and tunable one-dimensional charge transport in layered lanthanide metal–organic frameworks. Nat. Chem. 12, 131–136 (2020). https://doi.org/10.1038/s41557-019-0372-0

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing