Slow charge transfer from pentacene triplet states at the Marcus optimum


Singlet fission promises to surpass the Shockley–Queisser limit for single-junction solar cell efficiency through the production of two electron–hole pairs per incident photon. However, this promise has not been fulfilled because singlet fission produces two low-energy triplet excitons that have been unexpectedly difficult to dissociate into free charges. To understand this phenomenon, we study charge separation from triplet excitons in polycrystalline pentacene using an electrochemical series of 12 different guest electron-acceptor molecules with varied reduction potentials. We observe separate optima in the charge yield as a function of driving force for singlet and triplet excitons, including inverted regimes for the dissociation of both states. Molecular acceptors can thus provide a strategic advantage to singlet fission solar cells by suppressing singlet dissociation at optimal driving forces for triplet dissociation. However, even at the optimal driving force, the rate constant for charge transfer from the triplet state is surprisingly small, ~107 s−1, presenting a previously unidentified obstacle to the design of efficient singlet fission solar cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Illustrations of both the spatial and energetic dimensions of these experiments, which feature electrochemically tuned electron-acceptor molecules dispersed in a host matrix capable of efficient SF.
Fig. 2: Trends in charge yield as a function of driving force.
Fig. 3: Structures and relevant electrochemical potentials of the donor molecule (pentacene) and acceptor molecules (tetracenes, rhodanines (FBR and FTR) and PDIs) used in this study.
Fig. 4: TA spectra and kinetics for neat pentacene and pentacene/0.5 mol kg–1 PDI(F7Bu)-(CF3)3.
Fig. 5: The fluence dependence of charge carrier yield from TRMC and the excitation wavelength dependence of the TA spectra provide two independent means of testing whether charge transfer is rate-constant or diffusion limited.

Data availability

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

Code availability

The code generated during the current study is available from the corresponding author on reasonable request.


  1. 1.

    Hanna, M. C. & Nozik, A. J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 074510 (2006).

    Google Scholar 

  2. 2.

    Beard, M. C., Johnson, J. C., Luther, J. M. & Nozik, A. J. Multiple exciton generation in quantum dots versus singlet fission in molecular chromophores for solar photon conversion. Phil. Trans. R. Soc. A 373, 20140412 (2015).

    PubMed  Google Scholar 

  3. 3.

    Smith, M. B. & Michl, J. Recent advances in singlet fission. Annu. Rev. Phys. Chem. 64, 361–386 (2013).

    CAS  PubMed  Google Scholar 

  4. 4.

    Lee, J., Jadhav, P. & Baldo, M. A. High efficiency organic multilayer photodetectors based on singlet exciton fission. Appl. Phys. Lett. 95, 033301 (2009).

    Google Scholar 

  5. 5.

    Congreve, D. N. et al. External quantum efficiency above 100% in a singlet-exciton-fission-based organic photovoltaic cell. Science 340, 334–337 (2013).

    CAS  PubMed  Google Scholar 

  6. 6.

    Xu, X. et al. 8.0% efficient all-polymer solar cells with high photovoltage of 1.1 V and internal quantum efficiency near unity. Adv. Energy Mater. 8, 1700908 (2017).

    Google Scholar 

  7. 7.

    Gélinas, S. et al. Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes. Science 343, 512–516 (2014).

    PubMed  Google Scholar 

  8. 8.

    Provencher, F. et al. Direct observation of ultrafast long-range charge separation at polymer–fullerene heterojunctions. Nat. Commun. 5, 4288 (2014).

    CAS  PubMed  Google Scholar 

  9. 9.

    Marcus, R. A. On the theory of oxidation–reduction reactions involving electron transfer. I. J. Chem. Phys. 24, 966–978 (1956).

    CAS  Google Scholar 

  10. 10.

    Adams, D. M. et al. Charge transfer on the nanoscale: current status. J. Phys. Chem. B 107, 6668–6697 (2003).

    CAS  Google Scholar 

  11. 11.

    Hush, N. S. et al. Distance dependence of photoinduced electron-transfer through non-conjugated bridges. Chem. Phys. Lett. 117, 8–11 (1985).

    CAS  Google Scholar 

  12. 12.

    Miller, J. R., Calcaterra, L. T. & Closs, G. L. Intramolecular long-distance electron transfer in radical anions. The effects of free energy and solvent on the reaction rates. J. Am. Chem. Soc. 106, 3047–3049 (1984).

    CAS  Google Scholar 

  13. 13.

    Wasielewski, M. R. Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. Chem. Rev. 92, 435–461 (1992).

    CAS  Google Scholar 

  14. 14.

    Gust, D., Moore, T. A. & Moore, A. L. Molecular mimicry of photosynthetic energy and electron transfer. Acc. Chem. Res. 26, 198–205 (2002).

    Google Scholar 

  15. 15.

    Coffey, D. C. et al. An optimal driving force for converting excitons into free carriers in excitonic solar cells. J. Phys. Chem. C 116, 8916–8923 (2012).

    CAS  Google Scholar 

  16. 16.

    Ihly, R. et al. Tuning the driving force for exciton dissociation in single-walled carbon nanotube heterojunctions. Nat. Chem. 8, 603–609 (2016).

    CAS  PubMed  Google Scholar 

  17. 17.

    Lenhard, J. R. & Hein, B. R. Effects of J-aggregation on the redox levels of a cyanine dye. J. Phys. Chem. 100, 17287–17296 (1996).

    CAS  Google Scholar 

  18. 18.

    Pace, N. A., Reid, O. G. & Rumbles, G. Delocalization drives free charge generation in conjugated polymer films. ACS Energy Lett. 3, 735–741 (2018).

    CAS  Google Scholar 

  19. 19.

    Chaudhuri, S. et al. Electron transfer assisted by vibronic coupling from multiple modes. J. Chem. Theory Comput. 13, 6000–6009 (2017).

    CAS  PubMed  Google Scholar 

  20. 20.

    Tabachnyk, M. et al. Efficient singlet exciton fission in pentacene prepared from a soluble precursor. APL Mater. 4, 116112 (2016).

    Google Scholar 

  21. 21.

    Ramanan, C., Smeigh, A. L., Anthony, J. E., Marks, T. J. & Wasielewski, M. R. Competition between singlet fission and charge separation in solution-processed blend films of 6,13-bis(triisopropylsilylethynyl)pentacene with sterically-encumbered perylene-3,4:9,10-bis(dicarboximide)s. J. Am. Chem. Soc. 134, 386–397 (2011).

    PubMed  Google Scholar 

  22. 22.

    Gong, H.-X., Cao, Z., Li, M.-H., Liao, S.-H. & Lin, M.-J. Photoexcited perylene diimide radical anions for the reduction of aryl halides: a bay-substituent effect. Org. Chem. Front. 5, 2296–2302 (2018).

    CAS  Google Scholar 

  23. 23.

    Günbaş, D. D. et al. High charge carrier mobility and efficient charge separation in highly soluble perylenetetracarboxyl-diimides. Chem. Commun. 50, 4955–4958 (2014).

    Google Scholar 

  24. 24.

    Struijk, C. W. et al. Liquid crystalline perylene diimides: architecture and charge carrier mobilities. J. Am. Chem. Soc. 122, 11057–11066 (2000).

    CAS  Google Scholar 

  25. 25.

    Saeki, A., Seki, S. & Tagawa, S. Electrodeless measurement of charge carrier mobility in pentacene by microwave and optical spectroscopy techniques. J. Appl. Phys. 100, 023703 (2006).

    Google Scholar 

  26. 26.

    Honsho, Y., Miyakai, T., Sakurai, T., Saeki, A. & Seki, S. Evaluation of intrinsic charge carrier transport at insulator–semiconductor interfaces probed by a non-contact microwave-based technique. Sci. Rep. 3, 1371 (2013).

    Google Scholar 

  27. 27.

    Ern, V. & Merrifield, R. E. Magnetic field effect on triplet exciton quenching in organic crystals. Phys. Rev. Lett. 21, 609–611 (1968).

    CAS  Google Scholar 

  28. 28.

    Cox, M., Janssen, P., Zhu, F. & Koopmans, B. Traps and trions as origin of magnetoresistance in organic semiconductors. Phys. Rev. B 88, 035202 (2013).

    Google Scholar 

  29. 29.

    Gesquiere, A. J., Park, S.-J. & Barbara, P. F. Hole-induced quenching of triplet and singlet excitons in conjugated polymers. J. Am. Chem. Soc. 127, 9556–9560 (2005).

    CAS  PubMed  Google Scholar 

  30. 30.

    Zarrabi, N., Burn, P. L., Meredith, P. & Shaw, P. E. Acceptor and excitation density dependence of the ultrafast polaron absorption signal in donor–acceptor organic solar cell blends. J. Phys. Chem. Lett. 7, 2640–2646 (2016).

    CAS  PubMed  Google Scholar 

  31. 31.

    Larson, B. W. et al. Electron affinity of phenyl–C61–butyric acid methyl ester (PCBM). J. Phys. Chem. C 117, 14958–14964 (2013).

    CAS  Google Scholar 

  32. 32.

    Murata, Y., Kato, N., Fujiwara, K. & Komatsu, K. Solid-state [4 + 2] cycloaddition of fullerene C60 with condensed aromatics using a high-speed vibration milling technique. J. Org. Chem. 64, 3483–3488 (1999).

    CAS  PubMed  Google Scholar 

  33. 33.

    Proudian, A. P. et al. Effect of Diels–Alder reaction in C60-tetracene photovoltaic devices. Nano Lett. 16, 6086–6091 (2016).

    CAS  PubMed  Google Scholar 

  34. 34.

    Jamieson, F. C. et al. Fullerene crystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells. Chem. Sci. 3, 485–492 (2012).

    CAS  Google Scholar 

  35. 35.

    Larson, B. W. et al. Inter-fullerene electronic coupling controls the efficiency of photoinduced charge generation in organic bulk heterojunctions. Adv. Energy Mater. 6, 1601427 (2016).

    Google Scholar 

  36. 36.

    Yong, C. K. et al. The entangled triplet pair state in acene and heteroacene materials. Nat. Commun. 8, 1–12 (2018).

    Google Scholar 

  37. 37.

    Trinh, M. T. et al. Distinct properties of the triplet pair state from singlet fission. Sci. Adv. 3, e1700241 (2017).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Schrauben, J. N. et al. Photocurrent enhanced by singlet fission in a dye-sensitized solar cell. ACS Appl. Mater. Interfaces 7, 2286–2293 (2015).

    CAS  PubMed  Google Scholar 

  39. 39.

    Pace, N. A. et al. Dynamics of singlet fission and electron injection in self-assembled acene monolayers on titanium dioxide. Chem. Sci. 9, 3004–3013 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Lee, J. et al. Singlet exciton fission photovoltaics. Acc. Chem. Res. 46, 1300–1311 (2013).

    CAS  PubMed  Google Scholar 

  41. 41.

    Odom, S. A., Parkin, S. R. & Anthony, J. E. Tetracene derivatives as potential red emitters for organic LEDs. Org. Lett. 5, 4245–4248 (2003).

    CAS  PubMed  Google Scholar 

  42. 42.

    Kroupa, D. M. et al. Control of energy flow dynamics between tetracene ligands and PbS quantum dots by size tuning and ligand coverage. Nano Lett. 18, 865–873 (2018).

    CAS  PubMed  Google Scholar 

  43. 43.

    Holliday, S. et al. A rhodanine flanked nonfullerene acceptor for solution-processed organic photovoltaics. J. Am. Chem. Soc. 137, 898–904 (2015).

    CAS  PubMed  Google Scholar 

  44. 44.

    Clikeman, T. T. et al. Core perylene diimide designs via direct bay- and ortho-(poly)trifluoromethylation: synthesis, isolation, X-ray structures, optical and electronic properties. Eur. J. Org. Chem. 2015, 6641–6654 (2015).

    CAS  Google Scholar 

  45. 45.

    Gao, J., Xiao, C., Jiang, W. & Wang, Z. Cyano-substituted perylene diimides with linearly correlated LUMO levels. Org. Lett. 16, 394–397 (2013).

    Google Scholar 

  46. 46.

    Reid, O. G. et al. Quantitative analysis of time-resolved microwave conductivity data. J. Phys. D 50, 493002 (2018).

    Google Scholar 

  47. 47.

    Savenije, T. J., Ferguson, A. J., Kopidakis, N. & Rumbles, G. Revealing the dynamics of charge carriers in polymer:fullerene blends using photoinduced time-resolved microwave conductivity. J. Phys. Chem. C 117, 24085–24103 (2013).

    CAS  Google Scholar 

Download references


This work was produced in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, for the US Department of Energy under Contract No. DE-AC36–08GO28308. Funding provided by the Solar Photochemistry Program of the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences. The views expressed in the article do not necessarily represent the views of the US Department of Energy or the US Government. T.T.C., S.H.S. and O.V.B. thank the National Science Foundation (grants CHE-1012468 and CHE-1362302) for support of the synthesis of PDI acceptors. S.H. and I.M. thank BASF, EPSRC (EP/G037515/1), EPSRC (EP/L016702/1), EC FP7 Project X10D (287818) and Nanomatcell (308997) for support of the synthesis of rhodanine acceptors. D.B.G. and J.E.A. thank the National Science Foundation (DMREF-1627428) for support of the synthesis of tetracene acceptors. We thank P. Parilla for advice regarding X-ray diffraction crystallite size measurements. We thank E. Pace for creating the table of contents graphic.

Author information




N.A.P. fabricated samples; performed steady-state absorption, X-ray diffraction, TA and TRMC measurements; synthesized PDI(dodecyl)-(CN)3 and PDI(dodecyl)-(CN)4 samples; and contributed to experimental design. N.V.K. synthesized PDI(dodecyl)-(CN)3 and PDI(dodecyl)-(CN)4 samples. T.T.C., S.H.S. and O.V.B. synthesized PDI(Bu)-(CF3)2, PDI(Bu)-(CF3)3, PDI(F7Bu)-(CF3)3 and PDI(F7Bu)-(CF3)4 samples. S.H. and I.M. synthesized FTR, FBR and CN-FBR samples. D.B.G. and J.E.A. synthesized TIPS Tc and TIPS Tc COOH samples. G.M.C. performed cyclic voltammetry measurements. S.U.N. performed atomic force microscopy measurements. J.C.J., G.R. and O.G.R. contributed to overall experimental design and supervised the project.

Corresponding authors

Correspondence to Justin C. Johnson or Garry Rumbles or Obadiah G. Reid.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary data, including further details and analysis of the kinetic Monte Carlo model, TRMC, TA, X-ray diffraction, steady-state absorption and electrochemical measurements; synthetic methods; Figs. 1–23 and Tables 1–3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pace, N.A., Korovina, N.V., Clikeman, T.T. et al. Slow charge transfer from pentacene triplet states at the Marcus optimum. Nat. Chem. 12, 63–70 (2020).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing