Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural basis for chain release from the enacyloxin polyketide synthase


Modular polyketide synthases and non-ribosomal peptide synthetases are molecular assembly lines that consist of several multienzyme subunits that undergo dynamic self-assembly to form a functional megacomplex. N- and C-terminal docking domains are usually responsible for mediating the interactions between subunits. Here we show that communication between two non-ribosomal peptide synthetase subunits responsible for chain release from the enacyloxin polyketide synthase, which assembles an antibiotic with promising activity against Acinetobacter baumannii, is mediated by an intrinsically disordered short linear motif and a β-hairpin docking domain. The structures, interactions and dynamics of these subunits were characterized using several complementary biophysical techniques to provide extensive insights into binding and catalysis. Bioinformatics analyses reveal that short linear motif/β-hairpin docking domain pairs mediate subunit interactions in numerous non-ribosomal peptide and hybrid polyketide–non-ribosomal peptide synthetases, including those responsible for assembling several important drugs. Short linear motifs and β-hairpin docking domains from heterologous systems are shown to interact productively, highlighting the potential of such interfaces as tools for biosynthetic engineering.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chain release in enacyloxin biosynthesis.
Fig. 2: Interactions between the Bamb_5917 PCP domain and Bamb_5915.
Fig. 3: aMD simulations of Bamb_5915 and the Bamb_5917 PCP domain, and model of the Bamb_5917_PCP domain–Bamb_5915 complex.
Fig. 4: Extracted ion chromatograms from ultrahigh performance liquid chromatography coupled with electrospray ionization–quadrupole–time-of-flight mass spectrometry analyses of chain release reactions.
Fig. 5: Bioinformatics analyses reveal that SLiM–βHD domain pairs mediate subunit interactions in numerous assembly lines.
Fig. 6: Heterologous SLiMs and βHD domains can interact productively.

Data availability

The structures of the Bamb_5917 PCP domain and Bamb_5915 are available from the PDB (accession IDs 5MTI and 6CGO, respectively). NMR assignments for the apo- and holo-Bamb_5917 PCP domain are available from the BMRB (; accession IDs 34085 and 27304, respectively). Raw NMR and BLI data can be obtained from The remaining data supporting the findings of this study are included in the Supplementary Information or are available from the corresponding authors upon request. All biological materials are available from the authors upon request.


  1. Fischbach, M. A. & Walsh, C. T. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 106, 3468–3496 (2006).

    Article  CAS  Google Scholar 

  2. Xu, W., Qiao, K. & Tang, Y. Structural analysis of protein–protein interactions in type I polyketide synthases. Crit. Rev. Biochem. Mol. Biol. 48, 98–122 (2013).

    Article  CAS  Google Scholar 

  3. Weissman, K. J. & Müller, R. Protein–protein interactions in multienzyme megasynthetases. Chembiochem 9, 826–848 (2008).

    Article  CAS  Google Scholar 

  4. Hacker, C. et al. Structure-based redesign of docking domain interactions modulates the product spectrum of a rhabdopeptide-synthesizing NRPS. Nat. Commun. 9, 4366 (2018).

    Article  Google Scholar 

  5. Dowling, D. P. et al. Structural elements of an NRPS cyclization domain and its intermodule docking domain. Proc. Natl Acad. Sci. USA 113, 12432–12437 (2016).

    Article  CAS  Google Scholar 

  6. Masschelein, J. et al. A dual transacylation mechanism for polyketide synthase chain release in enacyloxin antibiotic biosynthesis. Nat. Chem. (2019).

  7. Mahenthiralingam, E. et al. Enacyloxins are products of an unusual hybrid modular polyketide synthase encoded by a cryptic Burkholderia ambifaria Genomic Island. Chem. Biol. 18, 665–677 (2011).

    Article  CAS  Google Scholar 

  8. Leslie, A. G. W. Refined crystal structure of type III chloramphenicol acetyltransferase at 1.75 Å resolution. J. Mol. Biol. 213, 167–186 (1990).

    Article  CAS  Google Scholar 

  9. De Crécy-Lagard, V., Marlière, P. & Saurin, W. Multienzymatic non ribosomal peptide biosynthesis: identification of the functional domains catalysing peptide elongation and epimerisation. C.R. Acad. Sci. III 318, 927–936 (1995).

    PubMed  Google Scholar 

  10. Samel, S. A., Schoenafinger, G., Knappe, T. A., Marahiel, M. A. & Essen, L.-O. Structural and functional insights into a peptide bond-forming bidomain from a nonribosomal peptide synthetase. Structure 15, 781–792 (2007).

    Article  CAS  Google Scholar 

  11. Holm, L. & Rosenström, P. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545–W549 (2010).

    Article  CAS  Google Scholar 

  12. Richter, C. D., Nietlispach, D., Broadhurst, R. W. & Weissman, K. J. Multienzyme docking in hybrid megasynthetases. Nat. Chem. Biol. 4, 75–81 (2008).

    Article  CAS  Google Scholar 

  13. Koglin, A. et al. Conformational switches modulate protein interactions in peptide antibiotic synthetases. Science 312, 273–276 (2006).

    Article  CAS  Google Scholar 

  14. Lohman, J. R. et al. The crystal structure of BlmI as a model for nonribosomal peptide synthetase peptidyl carrier proteins. Proteins Struct. Funct. Bioinf. 82, 1210–1218 (2014).

    Article  CAS  Google Scholar 

  15. Garcı́a de la Torre, J., Huertas, M. L. & Carrasco, B. HYDRONMR: prediction of NMR Relaxation of Globular Proteins from Atomic-Level Structures and Hydrodynamic Calculations. J. Magn. Reson. 147, 138–146 (2000).

    Article  Google Scholar 

  16. Williamson, M. P. Using chemical shift perturbation to characterise ligand binding. Prog. Nucl. Magn. Reson. Spectrosc. 73, 1–16 (2013).

    Article  CAS  Google Scholar 

  17. Davey, N. E. et al. Attributes of short linear motifs. Mol. BioSyst. 8, 268–281 (2012).

    Article  CAS  Google Scholar 

  18. Vallurupalli, P., Bouvignies, G. & Kay, L. E. Studying “invisible” excited protein states in slow exchange with a major state conformation. J. Am. Chem. Soc. 134, 8148–8161 (2012).

    Article  CAS  Google Scholar 

  19. Manzi, L. et al. Carbene footprinting accurately maps binding sites in protein–ligand and protein–protein interactions. Nat. Commun. 7, 13288 (2016).

    Article  CAS  Google Scholar 

  20. Lamley, J. M. et al. Solid-state NMR of a protein in a precipitated complex with a full-length antibody. J. Am. Chem. Soc. 136, 16800–16806 (2014).

    Article  CAS  Google Scholar 

  21. Bertini, I. et al. Solid-state NMR of proteins sedimented by ultracentrifugation. Proc. Natl Acad. Sci. USA 108, 10396–10399 (2011).

    Article  CAS  Google Scholar 

  22. Mainz, A., Jehle, S., van Rossum, B. J., Oschkinat, H. & Reif, B. Large protein complexes with extreme rotational correlation times investigated in solution by magic-angle-spinning NMR spectroscopy. J. Am. Chem. Soc. 131, 15968–15969 (2009).

    Article  CAS  Google Scholar 

  23. Wishart, D. S. Interpreting protein chemical shift data. Prog. Nucl. Magn. Reson. Spectrosc. 58, 62–87 (2011).

    Article  CAS  Google Scholar 

  24. Hamelberg, D., Mongan, J. & McCammon, J. A. Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J. Chem. Phys. 120, 11919–11929 (2004).

    Article  CAS  Google Scholar 

  25. Bloudoff, K., Rodionov, D. & Schmeing, T. M. Crystal structures of the first condensation domain of CDA synthetase suggest conformational changes during the synthetic cycle of nonribosomal peptide synthetases. J. Mol. Biol. 425, 3137–3150 (2013).

    Article  CAS  Google Scholar 

  26. Bloudoff, K. & Schmeing, T. M. Structural and functional aspects of the nonribosomal peptide synthetase condensation domain superfamily: discovery, dissection and diversity. Biochim. Biophys. Acta Proteins Proteomics 1865, 1587–1604 (2017).

    Article  CAS  Google Scholar 

  27. Bisht, N. K. et al. Ligand migration and hexacoordination in type 1 non-symbiotic rice hemoglobin. Biochim. Biophys. Acta 1814, 1042–1053 (2011).

    Article  CAS  Google Scholar 

  28. Van Zundert, G. C. P. et al. The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 428, 720–725 (2016).

    Article  Google Scholar 

  29. Wassenaar, T. A. et al. WeNMR: structural biology on the grid. J. Grid Comput. 10, 743–767 (2012).

    Article  Google Scholar 

  30. Zhang, J. et al. Structural basis of nonribosomal peptide macrocyclization in fungi. Nat. Chem. Biol. 12, 1001–1003 (2016).

    Article  Google Scholar 

  31. Chen, W. H., Li, K., Guntaka, N. S. & Bruner, S. D. Interdomain and intermodule organization in epimerization domain containing nonribosomal peptide synthetases. ACS Chem. Biol. 11, 2293–2303 (2016).

    Article  CAS  Google Scholar 

  32. Medema, M. H. et al. Minimum information about a biosynthetic gene cluster. Nat. Chem. Biol. 11, 625–631 (2015).

    Article  CAS  Google Scholar 

  33. Dosztanyi, Z., Csizmok, V., Tompa, P. & Simon, I. IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21, 3433–3434 (2005).

    Article  CAS  Google Scholar 

  34. Agarwala, R. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 45, D12–D17 (2017).

    Article  CAS  Google Scholar 

  35. Inahashi, Y. et al. Watasemycin biosynthesis in Streptomyces venezuelae: thiazoline C-methylation by a type B radical-SAM methylase homologue. Chem. Sci. 8, 2823–2831 (2017).

    Article  CAS  Google Scholar 

  36. Jenner, M. et al. Mechanism of intersubunit ketosynthase–dehydratase interaction in polyketide synthases. Nat. Chem. Biol. 14, 270–275 (2018).

    Article  CAS  Google Scholar 

  37. Cilia, E., Pancsa, R., Tompa, P., Lenaerts, T. & Vranken, W. F. The DynaMine webserver: predicting protein dynamics from sequence. Nucleic Acids Res. 42, W264–W270 (2014).

    Article  CAS  Google Scholar 

Download references


The European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013; ERC Grant Agreement 639907) supported this research. J.R.L. acknowledges funding from the Royal Society (RG130022), the EPSRC (EP/L025906/1), the BBSRC (BB/L022761/1 and BB/R010218/1) and the Gates Foundation (OPP1160394). The European Commission (Marie Sklodowska-Curie Fellowship; contract no. 656067) and the Research Foundation Flanders funded J.M. G.L.C. acknowledges the BBSRC (BB/L021692/1 and BB/K002341/1) and the Royal Society (Wolfson Research Merit Award WM130033) for funding. The University of Warwick funded P.K.S. through an Institute of Advanced Study fellowship. D.G. and S.Z. were supported by the EPSRC through the Centre for Doctoral Training in Molecular Analytical Science (EP/L015307/1) and the Bridging the Gaps—EPS and AMR initiative (EP/M027503/1), respectively. E.L.C.S. is a Research Career Development Fellow in the Warwick Integrative Synthetic Biology Centre supported by the BBSRC and EPSRC (BB/M017982/1). We acknowledge the FP7 WeNMR (261572) and H2020 West-Life (675858) European e-Infrastructure projects for the use of their web portals, which make use of the EGI infrastructure and DIRAC4EGI service with the dedicated support of CESNET-MetaCloud, INFN-PADOVA, NCG-INGRID-PT, RAL-LCG2, TW-NCHC, IFCA-LCG2, SURFsara and NIKHEF, and the additional support of the national GRID Initiatives of Belgium, France, Italy, Germany, the Netherlands, Poland, Portugal, Spain, UK, South Africa, Malaysia, Taiwan and the US Open Science Grid. We thank A. Marsh for providing access to the workstation used for the aMD simulation of Bamb_5915. Molecular graphics were generated using UCSF Chimera and Chimera X, developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco, supported by the NIH (P41-GM103311 and R01-GM129325). We thank G. Bouvignies for assistance with ChemEx.

Author information

Authors and Affiliations



J.R.L., G.L.C., S.K., A.G. and D.G. conceived and designed the experiments. S.K., D.G., J.M. and S.Z. designed primers and generated constructs for protein expression, expressed and purified the proteins and performed biochemical assays. S.K., A.G., D.G. and J.R.L. performed and analysed the NMR experiments. A.G. calculated the NMR structures. P.K.S., D.R., V.F., T.R.V. and S.-C.T. crystallized Bamb_5915, and T.R.V. and S.-C.T. solved its structure. D.G., E.L.C.S., S.K. and J.R.L. performed the bioinformatics analyses. M.J., L.M. and N.J.O. performed and analysed the carbene footprinting. A.G. and J.R.L. performed and analysed the MD and docking simulations. J.R.L., G.L.C., S.K., D.G., A.G. and T.R.V. wrote the paper. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Gregory L. Challis or Józef R. Lewandowski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Details of the materials and methods used, Figs. 1–43 and Tables 1–15.

Supplementary Data

Raw carbene footprinting data for Bamb_5915 and Bamb_5917, and SLiM–βHD domain pair hits from the GenBank database (database accessed July 2018).

Supplementary Video 1

Fly through the solvent channel in the X-ray crystal structure of Bamb_5915.

Supplementary Video 2

1 µs accelerated MD simulation of Bamb_5915.

Supplementary Video 3

Fly through the solvent channel after 0.528 µs aMD simulations of Bamb_5915.

Supplementary Video 4

The first mode from Principal Component Analysis of the 1 µs aMD simulations of Bamb_5915.

Supplementary Video 5

The first mode from Principal Component Analysis of the 0.5 µs aMD simulations of the holo-Bamb_5917 PCP domain.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosol, S., Gallo, A., Griffiths, D. et al. Structural basis for chain release from the enacyloxin polyketide synthase. Nat. Chem. 11, 913–923 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing