Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Energy threshold for chiral symmetry breaking in molecular self-replication

Abstract

The homochirality of biological molecules (right-handed sugars and left-handed amino acids) is a signature of life. Extensive research has been devoted to understanding how enrichment of one enantiomer over the other might have emerged from a prebiotic world. Here, we use experimental data from the model Soai autocatalytic reaction system to evaluate the energy required for symmetry breaking and chiral amplification in molecular self-replication. One postulate for the source of the original imbalance is the tiny difference in energy between enantiomers due to parity violation in the weak force. We discuss the plausibility of parity violation energy difference coupled with asymmetric autocatalysis as a rationalization for absolute asymmetric synthesis and the origin of the homochirality of biological molecules. Our results allow us to identify the magnitude of the energy imbalance that gives rise to directed symmetry breaking and asymmetric amplification in this autocatalytic system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Asymmetric amplification occurs via autocatalysis.
Fig. 2: Asymmetric amplification in Soai autocatalysis initiated by isotopically chiral molecules.
Fig. 3: Reaction including both enantiomers of the isotopically chiral initiator.
Fig. 4: Stochastic simulations of the Soai reaction in the presence of isotopically chiral initiators.

Similar content being viewed by others

Data availability

All relevant data supporting the findings of this study are available within the paper and its Supplementary Information files and/or are available on request from the authors.

Code availability

The Mathematica code used in this stochastic modelling is available on request from the authors.

References

  1. Lee, T. D. & Yang, C. N. Question of parity conservation in weak interactions. Phys. Rev. 104, 254–258 (1956).

    Article  CAS  Google Scholar 

  2. Wu, C. S., Ambler, E., Hayward, R. W., Hoppes, D. & Hudson, R. Experimental test of parity conservation in beta decay. Phys. Rev. 105, 1413–1415 (1957).

    Article  CAS  Google Scholar 

  3. Garwin, R. L., Lederman, L. M. & Weinrich, M. Observations of the failure of conservation of parity and charge conjugation in meson decays: the magnetic moment of the free muon. Phys. Rev. 105, 1415–1417 (1957).

    Article  CAS  Google Scholar 

  4. Yamagata, Y. A hypothesis for the asymmetric appearance of biomolecules on Earth. J. Theor. Biol. 11, 495–498 (1966).

    Article  CAS  Google Scholar 

  5. Quack, M. How important is parity violation for molecular and biomolecular chirality? Angew. Chem. Int. Ed. 41, 4618–4630 (2002).

    Article  CAS  Google Scholar 

  6. Frank, F. C. On spontaneous asymmetric synthesis. Biochim. Biophys. Acta 11, 459–463 (1953).

    Article  CAS  Google Scholar 

  7. Soai, K., Shibata, T., Morioka, H. & Choji, K. Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule. Nature 378, 767–768 (1995).

    Article  CAS  Google Scholar 

  8. Blackmond, D. G., McMillan, C. R., Ramdeehul, S., Schorm, A. & Brown, J. M. Origins of asymmetric amplification in autocatalytic alkylzinc additions. J. Am. Chem. Soc. 123, 10103–10104 (2001).

    Article  CAS  Google Scholar 

  9. Blackmond, D. G. Description of the condition for asymmetric amplification in autocatalytic reactions. Adv. Synth. Catal. 344, 156–158 (2002).

    Article  CAS  Google Scholar 

  10. Blackmond, D. G. Asymmetric autocatalysis and its implications for the origin of homochirality. Proc. Natl Acad. Sci. USA 101, 5732–5736 (2004).

    Article  CAS  Google Scholar 

  11. Gridnev, I. D., Serafimov, J. M. & Brown, J. M. Solution structure and reagent binding of the zinc alkoxide catalyst in the Soai asymmetric autocatalytic reaction. Angew. Chem. Int. Ed. 43, 4884–4887 (2004).

    Article  CAS  Google Scholar 

  12. Jafarpour, F., Biancalani, T. & Goldenfeld, N. Noise-induced mechanism for biological homochirality of early life self-replicators. Phys. Rev. Lett. 115, 158101 (2015).

    Article  Google Scholar 

  13. Stich, M., Ribó, J. M., Blackmond, D. G. & Hochberg, D. Necessary conditions for the emergence of homochirality via autocatalytic self-replication. J. Chem. Phys. 145, 074111 (2016).

    Article  Google Scholar 

  14. Blackmond, D. G. Mechanistic study of the Soai reaction informed by kinetic analysis. Tetrahedron Asymm. 17, 584–589 (2006).

    Article  CAS  Google Scholar 

  15. Buono, F. G. & Blackmond, D. G. Kinetic evidence for a tetrameric transition state in the asymmetric alkylation of pyrimidyl aldehydes. J. Am. Chem. Soc. 125, 8978–8979 (2003).

    Article  CAS  Google Scholar 

  16. Gridnev, I. D., Serafimov, J. M., Quiney, H. & Brown, J. M. Reflections on spontaneous asymmetric synthesis by amplifying autocatalysis. Org. Biomol. Chem. 1, 3811–3819 (2003).

    Article  CAS  Google Scholar 

  17. Quaranta, M., Gehring, T., Odell, B., Brown, J. M. & Blackmond, D. G. Unusual inverse temperature dependence on reaction rate in the asymmetric autocatalytic alkylation of pyrimidyl aldehydes. J. Am. Chem. Soc. 132, 15104–15107 (2010).

    Article  CAS  Google Scholar 

  18. Gridnev, I. D. & Vorobiev, A. K. Quantification of sophisticated equilibria in the reaction pool and amplifying catalytic cycle of the Soai reaction. ACS Catal. 2, 2137–2149 (2012).

    Article  CAS  Google Scholar 

  19. Matsumoto, A. et al. Crystal structure of the isopropylzinc alkoxide of pyrimidyl alkanol: mechanistic insights for asymmetric autocatalysis with amplification of enantiomeric excess. Angew. Chem. Int. Ed. 54, 15218–15221 (2015).

    Article  CAS  Google Scholar 

  20. Schiaffino, L. & Ercolani, E. Amplification of chirality and enantioselectivity in the asymmetric autocatalytic Soai reaction. ChemPhysChem 10, 2508–2515 (2009).

    Article  CAS  Google Scholar 

  21. Shibata, T. et al. Amplification of a slight enantiomeric imbalance in molecules based on asymmetric autocatalysis: the first correlation between high enantiomeric enrichment in a chiral molecule and circularly polarized light. J. Am. Chem. Soc. 120, 12157–12158 (1998).

    Article  CAS  Google Scholar 

  22. Soai, K. et al. d- and l-Quartz-promoted highly enantioselective synthesis of a chiral organic compound. J. Am. Chem. Soc. 121, 11235–11236 (1999).

    Article  CAS  Google Scholar 

  23. Kawasaki, T. et al. Asymmetric autocatalysis triggered by carbon isotope (13C/12C). Science 324, 492–495 (2009).

    Article  CAS  Google Scholar 

  24. Kawasaki, T. et al. Asymmetric autocatalysis induced by meteoritic amino acids with hydrogen isotope chirality. Chem. Commun. 2009, 4396–4398 (2009).

    Article  Google Scholar 

  25. Kawasaki, T. et al. Asymmetric autocatalysis triggered by chiral isotopomer arising from oxygen isotope substitution. Angew. Chem. Int. Ed. 50, 8131–8133 (2011).

    Article  CAS  Google Scholar 

  26. Matsumoto, A. et al. Asymmetric induction by a nitrogen 14N/15N isotopomer in conjunction with asymmetric autocatalysis. Angew. Chem. Int. Ed. 55, 15246–15249 (2016).

    Article  CAS  Google Scholar 

  27. Sato, I., Omiya, D., Saito, T. & Soai, K. Highly enantioselective synthesis induced by chiral primary alcohols due to deuterium substitution. J. Am. Chem. Soc. 122, 11739–11740 (2000).

    Article  CAS  Google Scholar 

  28. Hawbaker, N. A. & Blackmond, D. G. Rationalization of asymmetric amplification via autocatalysis triggered by isotopically chiral molecules. ACS Central Sci. 4, 776–780 (2018).

    Article  CAS  Google Scholar 

  29. Buono, F. G., Iwamura, H. & Blackmond, D. G. Physical and chemical rationalization for asymmetric amplification in autocatalytic reactions. Angew. Chem. Int. Ed. 43, 2099–2103 (2004).

    Article  CAS  Google Scholar 

  30. Saiki, R. et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354 (1985).

    Article  CAS  Google Scholar 

  31. Schnoerr, D., Sanguinetti, G. & Grima, R. Approximation and inference methods for stochastic biochemical kinetics—a tutorial review. J. Phys. A Math. Theor. 50, 093001 (2017).

    Article  Google Scholar 

  32. Kondepudi, D. K. & Asakura, A. Chiral autocatalysis, spontaneous symmetry breaking, and stochastic behavior. Acc. Chem. Res. 34, 946–954 (2001).

    Article  CAS  Google Scholar 

  33. Kondepudi, D. K. & Nelson, G. W. Weak neutral currents and the origin of biomolecular chirality. Nature 314, 438–441 (1985).

    Article  CAS  Google Scholar 

  34. Kondepudi, D. K. & Nelson, G. W. Chiral symmetry breaking in non-equilibrium systems. Phys. Rev. Lett. 50, 1023–1026 (1983).

    Article  CAS  Google Scholar 

  35. Sato, I., Urabe, H., Ishiguro, S., Shibata, T. & Soai, K. Amplification of chirality from extremely low to greater than 99.5% ee by asymmetric autocatalysis. Angew. Chem. Int. Ed. 42, 315–317 (2003).

    Article  CAS  Google Scholar 

  36. Singleton, D. A. & Vo, L. K. Enantioselective synthesis without discrete optically active additives. J. Am. Chem. Soc. 124, 10010–10011 (2002).

    Article  CAS  Google Scholar 

  37. Singleton, D. A. & Vo, L. K. A few molecules can control the enantiomeric outcome. Evidence supporting absolute asymmetric synthesis using the Soai asymmetric autocatalysis. Org. Lett. 5, 4337–4339 (2003).

    Article  CAS  Google Scholar 

  38. Maioli, M., Varadi, G., Kurdi, R., Caglioti, L. & Pályi, G. Limits of the classical concept of concentration. J. Phys. Chem. B 120, 7438–7445 (2016).

    Article  CAS  Google Scholar 

  39. Lente, G. The effect of parity violation on kinetic models of enantioselective autocatalysis. Phys. Chem. Chem. Phys. 9, 6134–6141 (2007).

    Article  CAS  Google Scholar 

  40. Quack, M. On biomolecular homochirality as a quasi-fossil of the evolution of life. Adv. Chem. Phys. 157, 249–290 (2015).

    Google Scholar 

  41. Berger, R. & Quack, M. Electroweak quantum chemistry of alanine: parity violation in gas and condensed phases. ChemPhysChem 1, 57–60 (2000).

    Article  CAS  Google Scholar 

  42. Von Kiedrowski, G. A self-replicating hexadeoxynucleotide. Angew. Chem. Int. Ed. 25, 932–935 (1986).

    Article  Google Scholar 

  43. Plöger, T. A. & von Kiedrowski, G. A self-replicating peptide nucleic acid. Org. Biomol. Chem. 12, 6908–6914 (2014).

    Article  Google Scholar 

  44. Bag, B. G. & von Kiedrowski, G. Templates, autocatalysis, and molecular replication. Pure Appl. Chem. 68, 2145–2152 (1996).

    Article  CAS  Google Scholar 

  45. Orgel, L. E. The implausibility of metabolic cycles on the prebiotic Earth. PLoS Biol. 6, 0005–0013 (2008).

    Article  CAS  Google Scholar 

  46. Blackmond, D. G. An examination of the role of autocatalytic cycles in the chemistry of proposed primordial reactions. Angew. Chem. Int. Ed. 48, 386–390 (2009).

    Article  CAS  Google Scholar 

  47. Budin, I. & Szostak, J. W. Expanding roles for diverse physical phenomena during the origin of life. Annu. Rev. Biophys. 39, 245–263 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.G.B. acknowledges funding from the Simons Foundation through the Simons Collaboration on the Origins of Life (SCOL 287625). N.A.H. acknowledges a US Department of Defense SMART (Science, Mathematics, and Research for Transformation) Scholarship for Service. We are grateful to D. K. Kondepudi for stimulating discussions and guidance in stochastic modelling. We also acknowledge helpful discussions with J. M. Brown, G. F. Joyce and S. E. Denmark.

Author information

Authors and Affiliations

Authors

Contributions

N.A.H. carried out the experimental and modelling studies and provided input in the writing. D.G.B. conceived the project, supervised the experimental work and interpretation of the experimental and modelling studies, and wrote the paper.

Corresponding author

Correspondence to Donna G. Blackmond.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary information providing details of the experimental and computational methods, full tables of all experimental symmetry-breaking experiments, and figures showing the results of kinetic modelling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hawbaker, N.A., Blackmond, D.G. Energy threshold for chiral symmetry breaking in molecular self-replication. Nat. Chem. 11, 957–962 (2019). https://doi.org/10.1038/s41557-019-0321-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-019-0321-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing