Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.


Chirality makes a move

Interlocked molecules can exhibit chiral stereogenic elements that are not found in covalently bound systems. Now, the shuttling of the ring in a [2]rotaxane has been shown to result in enantiomeric co-conformations that selectively bind chiral guests.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2: Examples of recently recognized co-conformational stereogenic units exhibited by rotaxanes and catenanes that have yet to be synthetically realized6.


  1. Gal, J. Nat. Chem. 9, 604–605 (2017).

    Article  CAS  Google Scholar 

  2. Corra, S. et al. J. Am. Chem. Soc. 141, jacs.9b00941 (2019).

    Article  Google Scholar 

  3. Mislow, K. & Siegel, J. J. Am. Chem. Soc. 106, 3319–3328 (1984).

    Article  CAS  Google Scholar 

  4. Eliel, E., Wilen, S. & Mander, L. Stereochemistry of Organic Compounds (Wiley, 1994).

  5. Bruns, C. J. & Stoddart, J. F. The Nature of the Mechanical Bond: From Molecules to Machines (Wiley, 2016).

  6. Jamieson, E. M. G., Modicom, F. & Goldup, S. M. Chem. Soc. Rev. 47, 5266–5311 (2018).

    Article  CAS  Google Scholar 

  7. Schill, G. Catenanes, Rotaxanes and Knots (Academic Press, 1971).

  8. Hirose, K. et al. Symmetry 10, 20 (2018).

    Article  Google Scholar 

  9. Jinks, M. A. et al. Angew. Chem. Int. Ed. 57, 14806–14810 (2018).

    Article  CAS  Google Scholar 

  10. Mochizuki, Y., Ikeyatsu, K., Mutoh, Y., Hosoya, S. & Saito, S. Org. Lett. 19, 4347–4350 (2017).

    Article  CAS  Google Scholar 

  11. Quack, M. Angew. Chem. Int. Ed. 41, 4618–4630 (2002).

    Article  CAS  Google Scholar 

  12. Wolf, C. & Bentley, K. W. Chem. Soc. Rev. 42, 5408–24 (2013).

    Article  CAS  Google Scholar 

  13. Shabbir, S. H., Regan, C. J. & Anslyn, E. V. Proc. Natl Acad. Sci. 106, 10487–10492 (2009).

    Article  CAS  Google Scholar 

  14. Herrera, B. T., Pilicer, S. L., Anslyn, E. V., Joyce, L. A. & Wolf, C. J. Am. Chem. Soc. 140, 10385–10401 (2018).

    Article  CAS  Google Scholar 

  15. Jinks, M. A. et al. Angew. Chem. Int. Ed. 57, 14806–14810 (2018).

    Article  CAS  Google Scholar 

  16. Cakmak, Y., Erbas-Cakmak, S. & Leigh, D. A. J. Am. Chem. Soc. 138, 1749–1751 (2016).

    Article  CAS  Google Scholar 

  17. Alvarez-Pérez, M., Goldup, S. M., Leigh, D. A. & Slawin, A. M. Z. J. Am. Chem. Soc. 130, 1836–1838 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Stephen M. Goldup.

Additional information

Twitter: @sgoldup

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jamieson, E.M.G., Goldup, S.M. Chirality makes a move. Nat. Chem. 11, 765–767 (2019).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing