Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

MECHANICAL STEREOCHEMISTRY

Chirality makes a move

Interlocked molecules can exhibit chiral stereogenic elements that are not found in covalently bound systems. Now, the shuttling of the ring in a [2]rotaxane has been shown to result in enantiomeric co-conformations that selectively bind chiral guests.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2: Examples of recently recognized co-conformational stereogenic units exhibited by rotaxanes and catenanes that have yet to be synthetically realized6.

References

  1. 1.

    Gal, J. Nat. Chem. 9, 604–605 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    Corra, S. et al. J. Am. Chem. Soc. 141, jacs.9b00941 (2019).

    Article  Google Scholar 

  3. 3.

    Mislow, K. & Siegel, J. J. Am. Chem. Soc. 106, 3319–3328 (1984).

    CAS  Article  Google Scholar 

  4. 4.

    Eliel, E., Wilen, S. & Mander, L. Stereochemistry of Organic Compounds (Wiley, 1994).

  5. 5.

    Bruns, C. J. & Stoddart, J. F. The Nature of the Mechanical Bond: From Molecules to Machines (Wiley, 2016).

  6. 6.

    Jamieson, E. M. G., Modicom, F. & Goldup, S. M. Chem. Soc. Rev. 47, 5266–5311 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    Schill, G. Catenanes, Rotaxanes and Knots (Academic Press, 1971).

  8. 8.

    Hirose, K. et al. Symmetry 10, 20 (2018).

    Article  Google Scholar 

  9. 9.

    Jinks, M. A. et al. Angew. Chem. Int. Ed. 57, 14806–14810 (2018).

    CAS  Article  Google Scholar 

  10. 10.

    Mochizuki, Y., Ikeyatsu, K., Mutoh, Y., Hosoya, S. & Saito, S. Org. Lett. 19, 4347–4350 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Quack, M. Angew. Chem. Int. Ed. 41, 4618–4630 (2002).

    CAS  Article  Google Scholar 

  12. 12.

    Wolf, C. & Bentley, K. W. Chem. Soc. Rev. 42, 5408–24 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    Shabbir, S. H., Regan, C. J. & Anslyn, E. V. Proc. Natl Acad. Sci. 106, 10487–10492 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    Herrera, B. T., Pilicer, S. L., Anslyn, E. V., Joyce, L. A. & Wolf, C. J. Am. Chem. Soc. 140, 10385–10401 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    Jinks, M. A. et al. Angew. Chem. Int. Ed. 57, 14806–14810 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    Cakmak, Y., Erbas-Cakmak, S. & Leigh, D. A. J. Am. Chem. Soc. 138, 1749–1751 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    Alvarez-Pérez, M., Goldup, S. M., Leigh, D. A. & Slawin, A. M. Z. J. Am. Chem. Soc. 130, 1836–1838 (2008).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Goldup.

Additional information

Twitter: @sgoldup

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jamieson, E.M.G., Goldup, S.M. Chirality makes a move. Nat. Chem. 11, 765–767 (2019). https://doi.org/10.1038/s41557-019-0320-z

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing