Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Back-bonding between an electron-poor, high-oxidation-state metal and poor π-acceptor ligand in a uranium(v)–dinitrogen complex

Abstract

A fundamental bonding model in coordination and organometallic chemistry is the synergic, donor–acceptor interaction between a metal and a neutral π-acceptor ligand, in which the ligand σ donates to the metal, which π back-bonds to the ligand. This interaction typically involves a metal with an electron-rich, mid-, low- or even negative oxidation state and a ligand with a π* orbital. Here, we report that treatment of a uranium–carbene complex with an organoazide produces a uranium(v)–bis(imido)–dinitrogen complex, stabilized by a lithium counterion. This complex, which was isolated in a crystalline form, involves an electron-poor, high-oxidation-state uranium(v) 5f1 ion that is π back-bonded to the poor π-acceptor ligand dinitrogen. We propose that this is made possible by a combination of cooperative heterobimetallic uranium–lithium effects and the presence of suitable ancillary ligands that render the uranium ion unusually electron rich. This electron-poor back-bonding could have implications for the field of dinitrogen activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The classical donor–acceptor bonding model for a transition metal (M) and a neutral diatomic E≡E (N≡N or C≡O) π-acceptor ligand.
Fig. 2: Synthesis of compound 2 from precursor 1.
Fig. 3: Molecular structure of 2 at 150 K with 40% probability ellipsoids.
Fig. 4: Variable-temperature effective magnetic moment data for 2.
Fig. 5: Computed potential energy surface scans of the relative energy (kJ mol−1) versus the U1-N1 distance (Å) of 2.
Fig. 6: The singularly occupied, α-spin HOMO (338a, −1.715 eV) of 2.

Similar content being viewed by others

Data availability

The X-ray crystallographic data for 2 have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition number CCDC 1869009. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre (www.ccdc.cam.ac.uk/data_request/cif). All the other data supporting the findings of this study are available within the article and its Supplementary Information, or from the corresponding author upon reasonable request.

References

  1. Fryzuk, M. D. & Johnson, S. A. The continuing story of dinitrogen activation. Coord. Chem. Rev. 200–202, 379–409 (2000).

    Article  Google Scholar 

  2. Kushto, G. P., Souter, P. F. & Andrews, L. An infrared spectroscopic and quasirelativistic theoretical study of the coordination and activation of dinitrogen by thorium and uranium atoms. J. Chem. Phys. 108, 7121–7130 (1998).

    Article  CAS  Google Scholar 

  3. Andrews, L., Wang, X., Gong, Y., Vlaisavljevich, B. & Gagliardi, L. Infrared spectra and electronic structure calculations for the NUN(NN)1–5 and NU(NN)1–6 complexes in solid argon. Inorg. Chem. 52, 9989–9993 (2013).

    Article  CAS  Google Scholar 

  4. Burford, R. J. & Fryzuk, M. D. Examining the relationship between coordination mode and reactivity of dinitrogen. Nat. Rev. Chem. 1, 0026 (2017).

    Article  CAS  Google Scholar 

  5. Dell’Amico, D. B., Calderazzo, F., Marchetti, F. & Merlino, S. Synthesis and molecular structure of [Au4Cl8], and the isolation of [Pt(CO)Cl5] in thionyl chloride. J. Chem. Soc. Dalton Trans. 1982, 2257–2260 (1982).

    Article  Google Scholar 

  6. Bernhardt, E. & Preetz, W. Snythesis and spectroscopic characterization of fluorocarbonylosmates, normal coordinate analysis and crystal structure of fac-[OsF3Br2(CO)]2–. Z. Anorg. Allg. Chem. 624, 694–700 (1998).

    Article  CAS  Google Scholar 

  7. Höhling, M. & Preetz, W. Synthesis and crystal structure of tetraphenylarsonium pentachlorocarbonylosmate(iv), (Ph4As)[OsCl5(CO)]. Z. Naturforsch. B52, 978–980 (1997).

    Article  Google Scholar 

  8. Wovchko, E. A. & Yates, J. T. Activation of O2 on a photochemically generated Rhi site on an Al2O3 surface: low temperature O2 dissociation and CO oxidation. J. Am. Chem. Soc. 120, 10523–10527 (1998).

    Article  CAS  Google Scholar 

  9. Crayston, J. A., Almond, M. J., Downs, A. J., Poliakoff, M. & Turner, J. J. Formation of trans-M(O)2(CO)4 (M = Mo and W): intermediates in the photooxidation of matrix-isolated M(CO)6. Inorg. Chem. 23, 3051–3056 (1984).

    Article  CAS  Google Scholar 

  10. Bernhardt, E., Willner, H., Jonas, V., Thiel, W. & Aubke, F. The tetrakis(carbonyl)dioxoosmium(vi) cation: trans-[OsO2(CO)4]2+. Angew. Chem. Int. Ed. 39, 168–171 (2000).

    Article  CAS  Google Scholar 

  11. Malischewski, M., Seppelt, K., Sutter, J., Munz, D. & Meyer, K. A ferrocene-based dicationic iron(iv) carbonyl complex. Angew. Chem. Int. Ed. 57, 14597–14601 (2018).

    Article  CAS  Google Scholar 

  12. Marsella, J. A., Curtis, C. J., Bercaw, J. E. & Caulton, K. G. Low-temperature infrared study of d 0 carbonyl complexes. J. Am. Chem. Soc. 102, 7244–7246 (1980).

    Article  CAS  Google Scholar 

  13. Guram, A. S., Swenson, D. C. & Jordan, R. F. Synthesis and characterization of Cp2Zr(CH{Me}{6-ethylpyrid-2-yl})(CO)+, a d 0 metal alkyl carbonyl complex. Coordination chemistry of the four-membered azazirconacycle Cp2Zr(η2-C,N-CH{Me}{6-ethylpyrid-2-yl})+. J. Am. Chem. Soc. 114, 8991–8996 (1992).

    Article  CAS  Google Scholar 

  14. Hurlburt, P. K. et al. Nonclassical metal carbonyls: [Ag(CO)]+ and [Ag(CO)2]+. J. Am. Chem. Soc. 116, 10003–10014 (1994).

    Article  CAS  Google Scholar 

  15. Lupinetti, A. J., Frenking, G. & Strauss, S. H. Nonclassical metal carbonyls: appropriate definitions with a theoretical justification. Angew. Chem. Int. Ed. 37, 2113–2116 (1998).

    Article  CAS  Google Scholar 

  16. Roussel, P. & Scott, P. Complex of dinitrogen with trivalent uranium. J. Am. Chem. Soc. 120, 1070–1071 (1998).

    Article  CAS  Google Scholar 

  17. Cloke, F. G. N. & Hitchcock, P. B. Reversible binding and reduction of dinitrogen by a uranium(iii) pentalene complex. J. Am. Chem. Soc. 124, 9352 (2002).

    Article  CAS  Google Scholar 

  18. Mansell, S. M., Kaltsoyannis, N. & Arnold, P. L. Small molecule activation by uranium tris(aryloxides): experimental and computational studies of binding of N2, coupling of CO, and deoxygenation insertion of CO2 under ambient conditions. J. Am. Chem. Soc. 133, 9036–9051 (2011).

    Article  CAS  Google Scholar 

  19. Mansell, S. M., Farnaby, J. H., Germeroth, A. I. & Arnold, P. L. Thermally stable uranium dinitrogen complex with siloxide supporting ligands. Organometallics 32, 4214–4222 (2013).

    Article  CAS  Google Scholar 

  20. Korobkov, I., Gambarotta, S. & Yap, G. P. A. A highly reactive uranium complex supported by the calix[4]tetrapyrrole tetraanion affording dinitrogen cleavage, solvent deoxygenation, and polysilanol depolymerisation. Angew. Chem. Int. Ed. 41, 3433–3436 (2002).

    Article  CAS  Google Scholar 

  21. Falcone, M., Chatelain, L., Scopelliti, R., Zivkovic, I. & Mazzanti, M. Nitrogen reduction and functionalization by a multimetallic uranium nitride complex. Nature 547, 332–335 (2017).

    Article  CAS  Google Scholar 

  22. Brennan, J. G., Andersen, R. A. & Robbins, J. L. Preparation of the first molecular carbon monoxide complex of uranium, (Me3SiC5H4)3UCO. J. Am. Chem. Soc. 108, 335–336 (1986).

    Article  CAS  Google Scholar 

  23. Parry, J., Carmona, E., Coles, S. & Hursthouse, M. Synthesis and single crystal X-ray diffraction study on the first isolable carbonyl complex of an actinide, (C5Me4H)3U(CO). J. Am. Chem. Soc. 117, 2649–2650 (1995).

    Article  CAS  Google Scholar 

  24. Del Mar Conejo, M. et al. Carbon monoxide and isocyanide complexes of trivalent uranium metallocenes. Chem. Eur. J. 5, 3000–3009 (1999).

    Article  Google Scholar 

  25. Evans, W. J., Kozimor, S. A., Nyce, G. W. & Ziller, J. W. Comparative reactivity of sterically crowded nf 3 (C5Me5)3Nd and (C5Me5)3U complexes with CO: formation of a nonclassical carbonium ion versus an f element metal carbonyl complex. J. Am. Chem. Soc. 125, 13831–13835 (2003).

    Article  CAS  Google Scholar 

  26. Castro-Rodriguez, I. & Meyer, K. Carbon dioxide reduction and carbon monoxide activation employing a reactive uranium(iii) complex. J. Am. Chem. Soc. 127, 11242–11243 (2005).

    Article  CAS  Google Scholar 

  27. Langeslay, R. R. et al. Synthesis, structure, and reactivity of the sterically crowded Th3+ complex (C5Me5)3Th including formation of the thorium carbonyl, [(C5Me5)3Th(CO)][BPh4]. J. Am. Chem. Soc. 139, 3387–3398 (2017).

    Article  CAS  Google Scholar 

  28. Evans, W. J., Kozimor, S. A. & Ziller, J. W. A monometallic f element complex of dinitrogen: (C5Me5)3U(η1-N2). J. Am. Chem. Soc. 125, 14264–14265 (2003).

    Article  CAS  Google Scholar 

  29. Siladke, N. A. et al. Synthesis, structure, and magnetism of an f element nitrosyl complex, (C5Me4H)3UNO. J. Am. Chem. Soc. 134, 1243–1249 (2012).

    Article  CAS  Google Scholar 

  30. Maron, L., Eisenstein, O. & Andersen, R. A. The bond between CO and Cp′3U in Cp′3U(CO) involves back-bonding from the Cp′3U ligand-based orbitals of π-symmetry, where Cp′ represents a substituted cyclopentadienyl ligand. Organometallics 28, 3629–3635 (2009).

    Article  CAS  Google Scholar 

  31. Lu, E., Boronski, J. T., Gregson, M., Wooles, A. J. & Liddle, S. T. Silyl–phosphino–carbene complexes of uranium(iv). Angew. Chem. Int. Ed. 57, 5506–5511 (2018).

    Article  CAS  Google Scholar 

  32. Pyykkö, P. Additive covalent radii for single-, double-, and triple-bonded molecules and tetrahedrally bonded crystals: a summary. J. Phys. Chem. A 119, 2326–2337 (2015).

    Article  Google Scholar 

  33. Odom, A. L., Arnold, P. L. & Cummins, C. C. Heterodinuclear uranium/molybdenum dinitrogen complexes. J. Am. Chem. Soc. 120, 5836–5837 (1998).

    Article  CAS  Google Scholar 

  34. Hayton, T. W. et al. Synthesis of imido analogs of the uranyl ion. Science 310, 1941–1943 (2005).

    Article  CAS  Google Scholar 

  35. Lu, E. et al. Synthesis, characterization, and reactivity of a uranium(vi) carbene imido oxo complex. Angew. Chem. Int. Ed. 53, 6696–6700 (2014).

    Article  CAS  Google Scholar 

  36. Cooper, O. J. et al. Uranium–carbon multiple bonding: facile access to the pentavalent uranium carbene [U{C(PPh2NSiMe3)2}(Cl)2(I)] and comparison of Uv=C and Uiv=C double bonds. Angew. Chem. Int. Ed. 50, 2383–2386 (2011).

    Article  CAS  Google Scholar 

  37. Mills, D. P. et al. Synthesis of a uranium(vi)–carbene: reductive formation of uranyl(v)–methanides, oxidative preparation of a [R2C=U=O]2+ analogue of the [O=U=O]2+ uranyl ion (R = Ph2PNSiMe3), and comparison of the nature of Uiv=C, Uv=C and Uvi=C double bonds. J. Am. Chem. Soc. 134, 10047–10054 (2012).

    Article  CAS  Google Scholar 

  38. Cooper, O. J. et al. The nature of the U=C bond: pushing the stability of high oxidation state uranium carbenes to the limit. Chem. Eur. J. 19, 7071–7083 (2013).

    Article  CAS  Google Scholar 

  39. Cohen, J. D., Mylvaganam, M., Fryzuk, M. D. & Loehr, T. M. Resonance Raman studies of dinuclear zirconium complexes with a bridging dinitrogen ligand. Possible N2-coordination models for nitrogenase. J. Am. Chem. Soc. 116, 9529–9534 (1994).

    Article  CAS  Google Scholar 

  40. Laplaza, C. E. et al. Dinitrogen cleavage by three-coordinate molybdenum(iii) complexes: mechanistic and structural data. J. Am. Chem. Soc. 118, 8623–8638 (1996).

    Article  CAS  Google Scholar 

  41. Liddle, S. T. The renaissance of non-aqueous uranium chemistry. Angew. Chem. Int. Ed. 54, 8604–8641 (2015).

    Article  CAS  Google Scholar 

  42. King, D. M. et al. Molecular and electronic structure of terminal and alkali metal-capped uranium(v)-nitride complexes. Nat. Commun. 7, 13773 (2016).

    Article  CAS  Google Scholar 

  43. Castro-Rodríguez, I. & Meyer, K. Small molecule activation at uranium coordination complexes: control of reactivity via molecular architecture. Chem. Commun. 2006, 1353–1368 (2006).

    Article  Google Scholar 

  44. Kindra, D. R. & Evans, W. J. Magnetic susceptibility of uranium complexes. Chem. Rev. 114, 8865–8882 (2014).

    Article  CAS  Google Scholar 

  45. Minasian, S. G., Krinsky, J. L. & Arnold, J. Evaluating f-element bonding from structure and thermodynamics. Chem. Eur. J 17, 12234–12245 (2011).

    Article  CAS  Google Scholar 

  46. Bader, R. F. W., Slee, T. S., Cremer, D. & Kraka, E. Description of conjugation and hyperconjugation in terms of electron distributions. J. Am. Chem. Soc. 105, 5061–5068 (1983).

    Article  CAS  Google Scholar 

  47. MacLeod, K. C. & Holland, P. L. Recent developments in the homogeneous reduction of dinitrogen by molybdenum and iron. Nat. Chem. 5, 559–565 (2013).

    Article  CAS  Google Scholar 

  48. Foster, S. L. et al. Catalysts for nitrogen reduction to ammonia. Nat. Cat. 1, 490–500 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge funding and support from the UK Engineering and Physical Sciences Research Council (grants EP/M027015/ and EP/P001386/1), European Research Council (grant CoG612724), Royal Society (grant UF110005), the National EPSRC UK EPR Facility, The University of Manchester and the UK National Nuclear Laboratory. B.E.A. and N.K. also thank the University of Manchester for computational resources and associated support services from the Computational Shared Facility.

Author information

Authors and Affiliations

Authors

Contributions

E.L. and J.T.B. prepared and characterized the compound and its precursors. B.E.A. and N.K. performed the energy-scan calculations and analysed the results. E.L., A.J.W., I.J.V.-Y. and G.F.S.W. collected, solved, refined and analysed the crystallographic data. E.L., L.R.D., J.D.C. and P.J.C. recorded and interpreted the Raman data. F.T. recorded and interpreted the EPR data. S.T.L. originated the central idea, supervised the work, analysed the data, performed the DFT, NBO and QTAIM calculations and analysed the results, and wrote the manuscript with contributions from all the authors.

Corresponding author

Correspondence to Stephen T. Liddle.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary experimental details, computational details, characterization data, computational data tables and references.

Crystallographic data

CIF for compound 2; CCDC reference: 1869009.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, E., Atkinson, B.E., Wooles, A.J. et al. Back-bonding between an electron-poor, high-oxidation-state metal and poor π-acceptor ligand in a uranium(v)–dinitrogen complex. Nat. Chem. 11, 806–811 (2019). https://doi.org/10.1038/s41557-019-0306-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-019-0306-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing