Stimulus-responsive self-assembly of protein-based fractals by computational design


Fractal topologies, which are statistically self-similar over multiple length scales, are pervasive in nature. The recurrence of patterns in fractal-shaped branched objects, such as trees, lungs and sponges, results in a high surface area to volume ratio, which provides key functional advantages including molecular trapping and exchange. Mimicking these topologies in designed protein-based assemblies could provide access to functional biomaterials. Here we describe a computational design approach for the reversible self-assembly of proteins into tunable supramolecular fractal-like topologies in response to phosphorylation. Guided by atomic-resolution models, we develop fusions of Src homology 2 (SH2) domain or a phosphorylatable SH2-binding peptide, respectively, to two symmetric, homo-oligomeric proteins. Mixing the two designed components resulted in a variety of dendritic, hyperbranched and sponge-like topologies that are phosphorylation-dependent and self-similar over three decades (~10 nm–10 μm) of length scale, in agreement with models from multiscale computational simulations. Designed assemblies perform efficient phosphorylation-dependent capture and release of cargo proteins.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Multiscale computational design approach for fractal assembly design.
Fig. 2: Assembly formation, dissolution and inhibition in vitro.
Fig. 3: Assembly formation and characterization with helium ion microscopy, AFM and transmission electron microscopy.
Fig. 4: Assembly characterization with cryo-ET.
Fig. 5: Fractal assemblies capture and release greater amounts of cargo compared to globular assemblies.

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and its Supplementary Information files. Raw data used to generate all figures are available via Figshare (, and cryo-ET maps are available in the EMDB (accession codes EMD-20062 and EMD-20063).

Code availability

Scripts and input files used for Rosetta simulations and code used for coarse-grained simulations are available from a GitHub repository (


  1. 1.

    Mandelbrot, B. B. The Fractal Geometry of Nature (W. H. Freeman & Company, 1982).

  2. 2.

    Stanley, H. E. & Meakin, P. Multifractal phenomena in physics and chemistry. Nature 335, 405–409 (1988).

    CAS  Article  Google Scholar 

  3. 3.

    Losa, G. A. Fractals in Biology and Medicine Vol. IV (Birkhäuser, 2005).

  4. 4.

    Fairbanks, M. S., McCarthy, D. N., Scott, S. A., Brown, S. A. & Taylor, R. P. Fractal electronic devices: simulation and implementation. Nanotechnology 22, 365304 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    Soleymani, L., Fang, Z. C., Sargent, E. H. & Kelley, S. O. Programming the detection limits of biosensors through controlled nanostructuring. Nat. Nanotechnol. 4, 844–848 (2009).

    CAS  Article  Google Scholar 

  6. 6.

    Ge, J., Lei, J. D. & Zare, R. N. Protein–inorganic hybrid nanoflowers. Nat. Nanotechnol. 7, 428–432 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    Zhang, P. C. & Wang, S. T. Designing fractal nanostructured biointerfaces for biomedical applications. ChemPhysChem 15, 1550–1561 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    Lim, B. et al. Pd–Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324, 1302–1305 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    Cerofolini, G. F., Narducci, D., Amato, P. & Romano, E. Fractal nanotechnology. Nanoscale Res. Lett. 3, 381–385 (2008).

    CAS  Article  Google Scholar 

  10. 10.

    Newkome, G. R. et al. Nanoassembly of a fractal polymer: a molecular ‘Sierpinski hexagonal gasket’. Science 312, 1782–1785 (2006).

    CAS  Article  Google Scholar 

  11. 11.

    Shang, J. et al. Assembling molecular Sierpinski triangle fractals. Nat. Chem. 7, 389–393 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    Newkome, G. R. & Moorefield, C. N. From 1 → 3 dendritic designs to fractal supramacromolecular constructs: understanding the pathway to the Sierpinski gasket. Chem. Soc. Rev. 44, 3954–3967 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    Shin, S. et al. Polymer self-assembly into unique fractal nanostructures in solution by a one-shot synthetic procedure. J. Am. Chem. Soc. 140, 475–482 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    Tikhomirov, G., Petersen, P. & Qian, L. Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. Nature 552, 67–71 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    Zhang, F., Nangreave, J., Liu, Y. & Yan, H. Reconfigurable DNA origami to generate quasifractal patterns. Nano Lett. 12, 3290–3295 (2012).

    CAS  Article  Google Scholar 

  16. 16.

    Rothemund, P. W., Papadakis, N. & Winfree, E. Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2, e424 (2004).

    Article  Google Scholar 

  17. 17.

    Astier, Y., Bayley, H. & Howorka, S. Protein components for nanodevices. Curr. Opin. Chem. Biol. 9, 576–584 (2005).

    CAS  Article  Google Scholar 

  18. 18.

    Murr, M. M. & Morse, D. E. Fractal intermediates in the self-assembly of silicatein filaments. Proc. Natl Acad. Sci. USA 102, 11657–11662 (2005).

    CAS  Article  Google Scholar 

  19. 19.

    Khire, T. S., Kundu, J., Kundu, S. C. & Yadavalli, V. K. The fractal self-assembly of the silk protein sericin. Soft Matter 6, 2066–2071 (2010).

    CAS  Article  Google Scholar 

  20. 20.

    Lomander, A., Hwang, W. M. & Zhang, S. G. Hierarchical self-assembly of a coiled-coil peptide into fractal structure. Nano Lett. 5, 1255–1260 (2005).

    CAS  Article  Google Scholar 

  21. 21.

    Shen, W., Lammertink, R. G. H., Sakata, J. K., Kornfield, J. A. & Tirrell, D. A. Assembly of an artificial protein hydrogel through leucine zipper aggregation and disulfide bond formation. Macromolecules 38, 3909–3916 (2005).

    CAS  Article  Google Scholar 

  22. 22.

    Li, B. et al. Nonequilibrium self-assembly of pi-conjugated oligopeptides in solution. ACS Appl. Mater. Interfaces 9, 3977–3984 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    McManus, J. J., Charbonneau, P., Zaccarelli, E. & Asherie, N. The physics of protein self-assembly. Curr. Opin. Colloid 22, 73–79 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    King, N. P. et al. Computational design of self-assembling protein nanomaterials with atomic level accuracy. Science 336, 1171–1174 (2012).

    CAS  Article  Google Scholar 

  25. 25.

    Hsia, Y. et al. Design of a hyperstable 60-subunit protein dodecahedron [corrected]. Nature 535, 136–139 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Suzuki, Y. et al. Self-assembly of coherently dynamic, auxetic, two-dimensional protein crystals. Nature 533, 369–373 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Sinclair, J. C., Davies, K. M., Venien-Bryan, C. & Noble, M. E. Generation of protein lattices by fusing proteins with matching rotational symmetry. Nat. Nanotechnol. 6, 558–562 (2011).

    CAS  Article  Google Scholar 

  28. 28.

    Padilla, J. E., Colovos, C. & Yeates, T. O. Nanohedra: using symmetry to design self assembling protein cages, layers, crystals, and filaments. Proc. Natl Acad. Sci. USA 98, 2217–2221 (2001).

    CAS  Article  Google Scholar 

  29. 29.

    Zhang, J., Zheng, F. & Grigoryan, G. Design and designability of protein-based assemblies. Curr. Opin. Struct. Biol. 27, 79–86 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    Subramanian, R. H. et al. Self-assembly of a designed nucleoprotein architecture through multimodal interactions. ACS Cent. Sci. 4, 1578–1586 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    Churchfield, L. A. & Tezcan, F. A. Design and construction of functional supramolecular metalloprotein assemblies. Acc. Chem. Res. 52, 345–355 (2019).

    CAS  Article  Google Scholar 

  32. 32.

    Sontz, P. A., Song, W. J. & Tezcan, F. A. Interfacial metal coordination in engineered protein and peptide assemblies. Curr. Opin. Chem. Biol. 19, 42–49 (2014).

    CAS  Article  Google Scholar 

  33. 33.

    Brodin, J. D. et al. Metal-directed, chemically tunable assembly of one-, two- and three-dimensional crystalline protein arrays. Nat. Chem. 4, 375–382 (2012).

    CAS  Article  Google Scholar 

  34. 34.

    Ringler, P. & Schulz, G. E. Self-assembly of proteins into designed networks. Science 302, 106–109 (2003).

    CAS  Article  Google Scholar 

  35. 35.

    Lindenmayer, A. Mathematical models for cellular interactions in development. II. Simple and branching filaments with 2-sided inputs. J. Theor. Biol. 18, 300–315 (1968).

    CAS  Article  Google Scholar 

  36. 36.

    Lindenmayer, A. Mathematical models for cellular interactions in development. I. Filaments with 1-sided inputs. J. Theor. Biol. 18, 280–299 (1968).

    CAS  Article  Google Scholar 

  37. 37.

    Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557–562 (2007).

    Article  Google Scholar 

  38. 38.

    Zhang, Z. & Glotzer, S. C. Self-assembly of patchy particles. Nano Lett. 4, 1407–1413 (2004).

    CAS  Article  Google Scholar 

  39. 39.

    Kartha, M. J. & Sayeed, A. Phase transition in diffusion limited aggregation with patchy particles in two dimensions. Phys. Lett. A 380, 2791–2795 (2016).

    CAS  Article  Google Scholar 

  40. 40.

    Nicolas-Carlock, J. R., Carrillo-Estrada, J. L. & Dossetti, V. Fractality á la carte: a general particle aggregation model. Sci. Rep. 6, 19505 (2016).

    CAS  Article  Google Scholar 

  41. 41.

    Guesnet, E., Dendievel, R., Jauffres, D., Martin, C. L. & Yrieix, B. A growth model for the generation of particle aggregates with tunable fractal dimension. Physica A 513, 63–73 (2019).

    CAS  Article  Google Scholar 

  42. 42.

    Mansbach, R. A. & Ferguson, A. L. Patchy particle model of the hierarchical self-assembly of pi-conjugated optoelectronic peptides. J. Phys. Chem. B 122, 10219–10236 (2018).

    CAS  Article  Google Scholar 

  43. 43.

    Bianchi, E., Tartaglia, P., Zaccarelli, E. & Sciortino, F. Theoretical and numerical study of the phase diagram of patchy colloids: ordered and disordered patch arrangements. J. Chem. Phys. 128, 144504 (2008).

    Article  Google Scholar 

  44. 44.

    Lomakin, A., Asherie, N. & Benedek, G. B. Aeolotopic interactions of globular proteins. Proc. Natl Acad. Sci. USA 96, 9465–9468 (1999).

    CAS  Article  Google Scholar 

  45. 45.

    Vacha, R. & Frenkel, D. Relation between molecular shape and the morphology of self-assembling aggregates: a simulation study. Biophys. J. 101, 1432–1439 (2011).

    CAS  Article  Google Scholar 

  46. 46.

    Bianchi, E., Tartaglia, P., La Nave, E. & Sciortino, F. Fully solvable equilibrium self-assembly process: fine-tuning the clusters size and the connectivity in patchy particle systems. J. Phys. Chem. B 111, 11765–11769 (2007).

    CAS  Article  Google Scholar 

  47. 47.

    Yan, Y., Huang, J. & Tang, B. Z. Kinetic trapping—a strategy for directing the self-assembly of unique functional nanostructures. Chem. Commun. 52, 11870–11884 (2016).

    CAS  Article  Google Scholar 

  48. 48.

    Wackett, L. P., Sadowsky, M. J., Martinez, B. & Shapir, N. Biodegradation of atrazine and related s-triazine compounds: from enzymes to field studies. Appl. Microbiol. Biotechnol. 58, 39–45 (2002).

    CAS  Article  Google Scholar 

  49. 49.

    Kaneko, T. et al. Superbinder SH2 domains act as antagonists of cell signaling. Sci. Signal. 5, ra68 (2012).

    Article  Google Scholar 

  50. 50.

    Yang, L. et al. Computation-guided design of a stimulus-responsive multienzyme supramolecular assembly. Chembiochem 18, 2000–2006 (2017).

    CAS  Article  Google Scholar 

  51. 51.

    Das, R. & Baker, D. Macromolecular modeling with rosetta. Annu. Rev. Biochem. 77, 363–382 (2008).

    CAS  Article  Google Scholar 

  52. 52.

    Pellegrini, M., Wukovitz, S. W. & Yeates, T. O. Simulation of protein crystal nucleation. Proteins 28, 515–521 (1997).

    CAS  Article  Google Scholar 

  53. 53.

    Masters, B. R. Fractal analysis of the vascular tree in the human retina. Annu. Rev. Biomed. Eng. 6, 427–452 (2004).

    CAS  Article  Google Scholar 

  54. 54.

    Witten, T. A. & Sander, L. M. Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400–1403 (1981).

    CAS  Article  Google Scholar 

  55. 55.

    Swartz, A. R. & Chen, W. SpyTag/SpyCatcher functionalization of E2 nanocages with stimuli-responsive Z-ELP affinity domains for tunable monoclonal antibody binding and precipitation properties. Bioconjug. Chem. 29, 3113–3120 (2018).

    CAS  Article  Google Scholar 

  56. 56.

    Bilgicer, B. et al. A non-chromatographic method for the purification of a bivalently active monoclonal IgG antibody from biological fluids. J. Am. Chem. Soc. 131, 9361–9367 (2009).

    CAS  Article  Google Scholar 

  57. 57.

    Handlogten, M. W., Stefanick, J. F., Deak, P. E. & Bilgicer, B. Affinity-based precipitation via a bivalent peptidic hapten for the purification of monoclonal antibodies. Analyst 139, 4247–4255 (2014).

    CAS  Article  Google Scholar 

  58. 58.

    Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase transitions. Nat. Phys. 11, 899–904 (2015).

    CAS  Article  Google Scholar 

Download references


The authors acknowledge support from the NSF (1330760 to S.D.K. and L.W.; DGE-1433187 to N.E.H.; 1429062 to S.D.K.) and the NIH (R01GM080139 to M.C.). Cryoelectron microscopy was supported by the Rutgers New Jersey CryoEM/ET Core Facility. The authors thank J. Chodera for providing Src kinase and YopH phosphatase plasmids, V. Nanda, K.-B. Lee, G. Montelione, H. Cho, M. Liu, A. Permaul, O. Dineen, I. Patel and R. Patel for experimental assistance, and E. Tinberg, V. Nanda and D. Baker for helpful discussions.

Author information




N.E.H. and W.A.H. contributed equally to this work. N.E.H., W.A.H. and S.D.K. designed the research. W.A.H. developed the computational methodology for design and image analyses. N.E.H., D.Z., M.E.S. and M.K. expressed, purified and assayed proteins. N.E.H., V.M., T.G. and L.C.F. performed HIM. N.E.H., M.P., P.R. and S.-H.L. performed optical and fluorescence microscopy. D.Z. performed DLS, M.K. performed BLI and L.Y. performed TEM. I.M.-B. performed confocal microscopy. A.G.D. and L.P.W. performed polymer foam immobilization and activity assays. W.D., M.B., M.C. and W.A.H. performed cryo-ET and analyses. S.D.K., N.E.H. and W.A.H. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Sagar D. Khare.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information contains the methods section, additional discussion and references section, Supplementary Figs. 1 to 37, Supplementary Tables 1 to 3 and descriptions of Supplementary Videos 1 to 3

Supplementary zip file for scripts

A zip file containing scripts

Supplementary Video 1

Formation of dendritic assemblies by AtzC-SH2 and AtzA-pY proteins visualized by light microscopy

Supplementary Video 2

Cryo-electron tomography data and node assignments for a small (<20 connected component-containing) assembly

Supplementary Video 3

Cryo-electron tomography data and node assignments for the large (~6,000 connected component-containing) assembly

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hernández, N.E., Hansen, W.A., Zhu, D. et al. Stimulus-responsive self-assembly of protein-based fractals by computational design. Nat. Chem. 11, 605–614 (2019).

Download citation

Further reading