Article | Published:

Reaction blockading in a reaction between an excited atom and a charged molecule at low collision energy

Abstract

Recent advances have enabled studies of atom–ion chemistry at unprecedentedly low temperatures, allowing precision observation of chemical reactions and novel chemical dynamics. So far, these studies have primarily involved reactions between atoms and atomic ions or non-polar molecular ions, often in their electronic ground state. Here, we extend this work by studying an excited atom–polar-molecular-ion chemical reaction (Ca* + BaCl+) at low temperature in a hybrid atom–ion trapping system. The reaction rate and product branching fractions are measured and compared to model calculations as a function of both atomic quantum state and collision energy. At the lowest collision energy we find that the chemical dynamics differ dramatically from capture theory predictions and are primarily dictated by the radiative lifetime of the atomic quantum state instead of the underlying excited-state interaction potential. This reaction blockading effect, which greatly suppresses the reactivity of short-lived excited states, provides a means for directly probing the reaction range and also naturally suppresses unwanted chemical reactions in hybrid trapping experiments.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The experimental data sets (displayed in Figs. 1 and 2) are available from the Harvard Dataverse online repository at https://dataverse.harvard.edu/dataverse/cabacl.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Klein, A. et al. Directly probing anisotropy in atom–molecule collisions through quantum scattering resonances. Nat. Phys. 13, 35–38 (2016).

  2. 2.

    Carr, L. D., DeMille, D., Krems, R. V. & Ye, J. Cold and ultracold molecules: science, technology and applications. New J. Phys. 11, 055049 (2009).

  3. 3.

    Doyle, J. M., Bretislav, F. & Edvardas, N. Physics and chemistry with cold molecules. ChemPhysChem 17, 3581–3582 (2016).

  4. 4.

    Trippel, S., Stei, M., Cox, J. A. & Wester, R. Differential scattering cross-sections for the different product vibrational states in the ion–molecule reaction Ar+ + N2. Phys. Rev. Lett. 110, 163201 (2013).

  5. 5.

    Hall, F. H., Aymar, M., Raoult, M., Dulieu, O. & Willitsch, S. Light-assisted cold chemical reactions of barium ions with rubidium atoms. Mol. Phys. 111, 1683–1690 (2013).

  6. 6.

    Rellergert, W. G. et al. Measurement of a large chemical reaction rate between ultracold closed-shell 40Ca atoms and open-shell 174Yb+ ions held in a hybrid atom–ion trap. Phys. Rev. Lett. 107, 243201 (2011).

  7. 7.

    Zhang, D. & Willitsch, S. Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero Ch. 10 (The Royal Society of Chemistry, 2018).

  8. 8.

    Ratschbacher, L., Zipkes, C., Sias, C. & Köhl, M. Controlling chemical reactions of a single particle. Nat. Phys. 8, 649–652 (2012).

  9. 9.

    Sikorsky, T., Meir, Z., Ben-shlomi, R., Akerman, N. & Ozeri, R. Spin-controlled atom–ion chemistry. Nat. Commun. 9, 920 (2018).

  10. 10.

    Beyer, M. & Merkt, F. Half-collision approach to cold chemistry: shape resonances, elastic scattering and radiative association in the H+ + H and D+ + D collision systems. Phys. Rev. X 8, 031085 (2018).

  11. 11.

    Schneider, C., Schowalter, S. J., Yu, P. & Hudson, E. R. Electronics of an ion trap with integrated time-of-flight mass spectrometer. Int. J. Mass Spectrom. 394, 1–8 (2016).

  12. 12.

    Schowalter, S. J., Chen, K., Rellergert, W. G., Sullivan, S. T. & Hudson, E. R. An integrated ion trap and time-of-flight mass spectrometer for chemical and photo-reaction dynamics studies. Rev. Sci. Instrum. 83, 043103 (2012).

  13. 13.

    Schmid, P. C., Greenberg, J., Miller, M. I., Loeffler, K. & Lewandowski, H. J. An ion trap time-of-flight mass spectrometer with high mass resolution for cold trapped ion experiments. Rev. Sci. Instrum. 88, 123107 (2017).

  14. 14.

    Tomza, M. et al. Cold ion–atom systems. Preprint at https://arxiv.org/abs/1708.07832 (2017).

  15. 15.

    Yang, T. et al. Optical control of reactions between water and laser-cooled Be+ ions. J. Phys. Chem. Lett. 9, 3555–3560 (2018).

  16. 16.

    Hall, F. H. J. & Willitsch, S. Millikelvin reactive collisions between sympathetically cooled molecular ions and laser-cooled atoms in an ion–atom hybrid trap. Phys. Rev. Lett. 109, 233202 (2012).

  17. 17.

    Zipkes, C., Palzer, S., Sias, C. & Köhl, M. A trapped single ion inside a Bose–Einstein condensate. Nature 464, 388–391 (2010).

  18. 18.

    Zipkes, C., Palzer, S., Ratschbacher, L., Sias, C. & Köhl, M. Cold heteronuclear atom–ion collisions. Phys. Rev. Lett. 105, 133201 (2010).

  19. 19.

    Chang, Y.-P. et al. Specific chemical reactivities of spatially separated 3-aminophenol conformers with cold Ca+ ions. Science 342, 98–101 (2013).

  20. 20.

    Puri, P. et al. Synthesis of mixed hypermetallic oxide BaOCa+ from laser-cooled reagents in an atom–ion hybrid trap. Science 357, 1370–1375 (2017).

  21. 21.

    Stancil, P. C. & Zygelman, B. Radiative charge transfer in collisions of Li with H+. Astrophys. J. 472, 102 (1996).

  22. 22.

    Smith, D. The ion chemistry of interstellar clouds. Chem. Rev. 92, 1473–1485 (1992).

  23. 23.

    Reddy, V. S., Ghanta, S. & Mahapatra, S. First principles quantum dynamical investigation provides evidence for the role of polycyclic aromatic hydrocarbon radical cations in interstellar physics. Phys. Rev. Lett. 104, 111102 (2010).

  24. 24.

    Calvin, A. T. & Brown, K. R. Spectroscopy of molecular ions in coulomb crystals. J. Phys. Chem. Lett. 9, 5797–5804 (2018).

  25. 25.

    Shi, M., Herskind, P. F., Drewsen, M. & Chuang, I. L. Microwave quantum logic spectroscopy and control of molecular ions. New J. Phys. 15, 113019 (2013).

  26. 26.

    Wolf, F. et al. Non-destructive state detection for quantum logic spectroscopy of molecular ions. Nature 530, 457–460 (2016).

  27. 27.

    Rellergert, W. G. et al. Evidence for sympathetic vibrational cooling of translationally cold molecules. Nature 495, 490–494 (2012).

  28. 28.

    Hudson, E. R. Sympathetic cooling of molecular ions with ultracold atoms. EPJ Techn. Instrum. 3, 8 (2016).

  29. 29.

    Hauser, D. et al. Rotational state-changing cold collisions of hydroxyl ions with helium. Nat. Phys. 11, 467–470 (2015).

  30. 30.

    Hudson, E. R. & Campbell, W. C. Dipolar quantum logic for freely-rotating trapped molecular ions. Preprint at https://arxiv.org/abs/1806.09659 (2018).

  31. 31.

    Mulin, D. et al. H/D exchange in reactions of OH with D2 and of OD with H2 at low temperatures. Phys. Chem. Chem. Phys. 17, 8732–8739 (2015).

  32. 32.

    Allmendinger, P. et al. New method to study ion–molecule reactions at low temperatures and application to the reaction. ChemPhysChem 17, 3596–3608 (2016).

  33. 33.

    Hawley, M. & Smith, M. A. Gas phase collisional quenching of NO+ (v = 1) ions below 5 K. J. Chem. Phys. 95, 8662–8664 (1991).

  34. 34.

    Julienne, P. S. & Mies, F. H. Collisions of ultracold trapped atoms. J. Opt. Soc. Am. B 6, 2257–2269 (1989).

  35. 35.

    Gallagher, A. & Pritchard, D. E. Exoergic collisions of cold Na*–Na. Phys. Rev. Lett. 63, 957–960 (1989).

  36. 36.

    Weiner, J., Bagnato, V. S., Zilio, S. & Julienne, P. S. Experiments and theory in cold and ultracold collisions. Rev. Mod. Phys. 71, 1–85 (1999).

  37. 37.

    Gensemer, S. D. & Gould, P. L. Ultracold collisions observed in real time. Phys. Rev. Lett. 80, 936–939 (1998).

  38. 38.

    Schowalter, S. J. et al. Blue-sky bifurcation of ion energies and the limits of neutral-gas sympathetic cooling of trapped ions. Nat. Commun. 7, 12448 (2016).

  39. 39.

    Puri, P., Mills, M., West, E. P., Schneider, C. & Hudson, E. R. High-resolution collision energy control through ion position modulation in atom–ion hybrid systems. Rev. Sci. Instrum. 89, 083112 (2018).

  40. 40.

    Grier, A. T., Cetina, M., Oručević, F. & Vuletić, V. Observation of cold collisions between trapped ions and trapped atoms. Phys. Rev. Lett. 102, 223201 (2009).

  41. 41.

    Haze, S., Hata, S., Fujinaga, M. & Mukaiyama, T. Observation of elastic collisions between lithium atoms and calcium ions. Phys. Rev. A 87, 052715 (2013).

  42. 42.

    Chen, K., Sullivan, S. T. & Hudson, E. R. Neutral gas sympathetic cooling of an ion in a Paul trap. Phys. Rev. Lett. 112, 143009 (2014).

  43. 43.

    Rouse, I. & Willitsch, S. Superstatistical energy distributions of an ion in an ultracold buffer gas. Phys. Rev. Lett. 118, 143401 (2017).

  44. 44.

    Dalgarno, A., McDowell, M. & Williams, A. The mobilities of ions in unlike gases. Phil. Trans. R. Soc. 250, 411–425 (1958).

  45. 45.

    Langevin, P. A fundamental formula of kinetic theory. Ann. Chim. Phys 5, 245–288 (1905).

  46. 46.

    Pechukas, P., Light, J. C. & Rankin, C. Statistical theory of chemical kinetics: application to neutral atom–molecule reactions. J. Chem. Phys. 44, 794–805 (1966).

  47. 47.

    Rice, O. K. & Ramsperger, H. C. Theories of unimolecular gas reactions at low pressures. J. Am. Chem. Soc. 49, 1617–1629 (1927).

  48. 48.

    Dagdigian, P. J. Dependence of collision complex lifetime on product internal state: laser fluorescence detection of the Ca + NaCl crossed beam reaction. Chem. Phys. 21, 453–466 (1977).

  49. 49.

    Frisch, M. J. et al. Gaussian 09, Revision B.01 (Gaussian, 2009).

  50. 50.

    Werner, H.-J., Knowles, P. J., Knizia, G., Manby, F. R. & Schütz, M. Molpro: a general-purpose quantum chemistry program package. WIRES Comput. Mol. Sci. 2, 242–253 (2012).

  51. 51.

    Staanum, P. F., Højbjerre, K., Skyt, P. S., Hansen, A. K. & Drewsen, M. Rotational laser cooling of vibrationally and translationally cold molecular ions. Nat. Phys. 6, 271–274 (2010).

  52. 52.

    Rugango, R. et al. Sympathetic cooling of molecular ion motion to the ground state. New J. Phys. 17, 035009 (2015).

Download references

Acknowledgements

This work was supported by grants from the National Science Foundation (PHY-1205311, PHY-1806653 and DGE-1650604) and the Army Research Office (W911NF-15-1-0121, W911NF-14-1-0378 and W911NF-13-1-0213).

Author information

P.P. and M.M. acquired and analysed all experimental data presented in the work. P.P evaluated the phase space model for interpreting the experimental branching ratios. I.S., R.C. and P.P. provided the framework for the presented long-range capture model, while J.A.M. performed the electronic structure calculations utilized to understand short-range reaction dynamics. P.P., M.M., I.S., J.A.M. and R.C. contributed to the figures presented in the work. C.S. provided valuable experimental insight, and A.G.S. and E.R.H. provided guidance for the entire project and played key roles in merging the theoretical calculations with the experimental findings. P.P. and E.R.H. prepared the manuscript and all authors provided useful comments.

Competing interests

The authors declare no competing interests.

Correspondence to Prateek Puri.

Supplementary information

Supplementary Information

Supplementary methods, Supplementary Figs. 1 and 2

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: Experimental apparatus and techniques.
Fig. 2: Reaction blockading in excited neutral-ion systems.
Fig. 3: Potential energy curves and surfaces.