Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reaction blockading in a reaction between an excited atom and a charged molecule at low collision energy

Abstract

Recent advances have enabled studies of atom–ion chemistry at unprecedentedly low temperatures, allowing precision observation of chemical reactions and novel chemical dynamics. So far, these studies have primarily involved reactions between atoms and atomic ions or non-polar molecular ions, often in their electronic ground state. Here, we extend this work by studying an excited atom–polar-molecular-ion chemical reaction (Ca* + BaCl+) at low temperature in a hybrid atom–ion trapping system. The reaction rate and product branching fractions are measured and compared to model calculations as a function of both atomic quantum state and collision energy. At the lowest collision energy we find that the chemical dynamics differ dramatically from capture theory predictions and are primarily dictated by the radiative lifetime of the atomic quantum state instead of the underlying excited-state interaction potential. This reaction blockading effect, which greatly suppresses the reactivity of short-lived excited states, provides a means for directly probing the reaction range and also naturally suppresses unwanted chemical reactions in hybrid trapping experiments.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental apparatus and techniques.
Fig. 2: Reaction blockading in excited neutral-ion systems.
Fig. 3: Potential energy curves and surfaces.

Similar content being viewed by others

Data availability

The experimental data sets (displayed in Figs. 1 and 2) are available from the Harvard Dataverse online repository at https://dataverse.harvard.edu/dataverse/cabacl.

References

  1. Klein, A. et al. Directly probing anisotropy in atom–molecule collisions through quantum scattering resonances. Nat. Phys. 13, 35–38 (2016).

    Article  Google Scholar 

  2. Carr, L. D., DeMille, D., Krems, R. V. & Ye, J. Cold and ultracold molecules: science, technology and applications. New J. Phys. 11, 055049 (2009).

    Article  Google Scholar 

  3. Doyle, J. M., Bretislav, F. & Edvardas, N. Physics and chemistry with cold molecules. ChemPhysChem 17, 3581–3582 (2016).

    Article  CAS  Google Scholar 

  4. Trippel, S., Stei, M., Cox, J. A. & Wester, R. Differential scattering cross-sections for the different product vibrational states in the ion–molecule reaction Ar+ + N2. Phys. Rev. Lett. 110, 163201 (2013).

    Article  CAS  Google Scholar 

  5. Hall, F. H., Aymar, M., Raoult, M., Dulieu, O. & Willitsch, S. Light-assisted cold chemical reactions of barium ions with rubidium atoms. Mol. Phys. 111, 1683–1690 (2013).

    Article  CAS  Google Scholar 

  6. Rellergert, W. G. et al. Measurement of a large chemical reaction rate between ultracold closed-shell 40Ca atoms and open-shell 174Yb+ ions held in a hybrid atom–ion trap. Phys. Rev. Lett. 107, 243201 (2011).

    Article  Google Scholar 

  7. Zhang, D. & Willitsch, S. Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero Ch. 10 (The Royal Society of Chemistry, 2018).

  8. Ratschbacher, L., Zipkes, C., Sias, C. & Köhl, M. Controlling chemical reactions of a single particle. Nat. Phys. 8, 649–652 (2012).

    Article  CAS  Google Scholar 

  9. Sikorsky, T., Meir, Z., Ben-shlomi, R., Akerman, N. & Ozeri, R. Spin-controlled atom–ion chemistry. Nat. Commun. 9, 920 (2018).

    Article  Google Scholar 

  10. Beyer, M. & Merkt, F. Half-collision approach to cold chemistry: shape resonances, elastic scattering and radiative association in the H+ + H and D+ + D collision systems. Phys. Rev. X 8, 031085 (2018).

    CAS  Google Scholar 

  11. Schneider, C., Schowalter, S. J., Yu, P. & Hudson, E. R. Electronics of an ion trap with integrated time-of-flight mass spectrometer. Int. J. Mass Spectrom. 394, 1–8 (2016).

    Article  CAS  Google Scholar 

  12. Schowalter, S. J., Chen, K., Rellergert, W. G., Sullivan, S. T. & Hudson, E. R. An integrated ion trap and time-of-flight mass spectrometer for chemical and photo-reaction dynamics studies. Rev. Sci. Instrum. 83, 043103 (2012).

    Article  Google Scholar 

  13. Schmid, P. C., Greenberg, J., Miller, M. I., Loeffler, K. & Lewandowski, H. J. An ion trap time-of-flight mass spectrometer with high mass resolution for cold trapped ion experiments. Rev. Sci. Instrum. 88, 123107 (2017).

    Article  CAS  Google Scholar 

  14. Tomza, M. et al. Cold ion–atom systems. Preprint at https://arxiv.org/abs/1708.07832 (2017).

  15. Yang, T. et al. Optical control of reactions between water and laser-cooled Be+ ions. J. Phys. Chem. Lett. 9, 3555–3560 (2018).

    Article  CAS  Google Scholar 

  16. Hall, F. H. J. & Willitsch, S. Millikelvin reactive collisions between sympathetically cooled molecular ions and laser-cooled atoms in an ion–atom hybrid trap. Phys. Rev. Lett. 109, 233202 (2012).

    Article  Google Scholar 

  17. Zipkes, C., Palzer, S., Sias, C. & Köhl, M. A trapped single ion inside a Bose–Einstein condensate. Nature 464, 388–391 (2010).

    Article  CAS  Google Scholar 

  18. Zipkes, C., Palzer, S., Ratschbacher, L., Sias, C. & Köhl, M. Cold heteronuclear atom–ion collisions. Phys. Rev. Lett. 105, 133201 (2010).

    Article  Google Scholar 

  19. Chang, Y.-P. et al. Specific chemical reactivities of spatially separated 3-aminophenol conformers with cold Ca+ ions. Science 342, 98–101 (2013).

    Article  CAS  Google Scholar 

  20. Puri, P. et al. Synthesis of mixed hypermetallic oxide BaOCa+ from laser-cooled reagents in an atom–ion hybrid trap. Science 357, 1370–1375 (2017).

    Article  CAS  Google Scholar 

  21. Stancil, P. C. & Zygelman, B. Radiative charge transfer in collisions of Li with H+. Astrophys. J. 472, 102 (1996).

    Article  CAS  Google Scholar 

  22. Smith, D. The ion chemistry of interstellar clouds. Chem. Rev. 92, 1473–1485 (1992).

    Article  CAS  Google Scholar 

  23. Reddy, V. S., Ghanta, S. & Mahapatra, S. First principles quantum dynamical investigation provides evidence for the role of polycyclic aromatic hydrocarbon radical cations in interstellar physics. Phys. Rev. Lett. 104, 111102 (2010).

    Article  Google Scholar 

  24. Calvin, A. T. & Brown, K. R. Spectroscopy of molecular ions in coulomb crystals. J. Phys. Chem. Lett. 9, 5797–5804 (2018).

    Article  CAS  Google Scholar 

  25. Shi, M., Herskind, P. F., Drewsen, M. & Chuang, I. L. Microwave quantum logic spectroscopy and control of molecular ions. New J. Phys. 15, 113019 (2013).

    Article  Google Scholar 

  26. Wolf, F. et al. Non-destructive state detection for quantum logic spectroscopy of molecular ions. Nature 530, 457–460 (2016).

    Article  Google Scholar 

  27. Rellergert, W. G. et al. Evidence for sympathetic vibrational cooling of translationally cold molecules. Nature 495, 490–494 (2012).

    Article  Google Scholar 

  28. Hudson, E. R. Sympathetic cooling of molecular ions with ultracold atoms. EPJ Techn. Instrum. 3, 8 (2016).

    Article  Google Scholar 

  29. Hauser, D. et al. Rotational state-changing cold collisions of hydroxyl ions with helium. Nat. Phys. 11, 467–470 (2015).

    Article  CAS  Google Scholar 

  30. Hudson, E. R. & Campbell, W. C. Dipolar quantum logic for freely-rotating trapped molecular ions. Preprint at https://arxiv.org/abs/1806.09659 (2018).

  31. Mulin, D. et al. H/D exchange in reactions of OH with D2 and of OD with H2 at low temperatures. Phys. Chem. Chem. Phys. 17, 8732–8739 (2015).

    Article  CAS  Google Scholar 

  32. Allmendinger, P. et al. New method to study ion–molecule reactions at low temperatures and application to the reaction. ChemPhysChem 17, 3596–3608 (2016).

    Article  CAS  Google Scholar 

  33. Hawley, M. & Smith, M. A. Gas phase collisional quenching of NO+ (v = 1) ions below 5 K. J. Chem. Phys. 95, 8662–8664 (1991).

    Article  CAS  Google Scholar 

  34. Julienne, P. S. & Mies, F. H. Collisions of ultracold trapped atoms. J. Opt. Soc. Am. B 6, 2257–2269 (1989).

    Article  CAS  Google Scholar 

  35. Gallagher, A. & Pritchard, D. E. Exoergic collisions of cold Na*–Na. Phys. Rev. Lett. 63, 957–960 (1989).

    Article  CAS  Google Scholar 

  36. Weiner, J., Bagnato, V. S., Zilio, S. & Julienne, P. S. Experiments and theory in cold and ultracold collisions. Rev. Mod. Phys. 71, 1–85 (1999).

    Article  CAS  Google Scholar 

  37. Gensemer, S. D. & Gould, P. L. Ultracold collisions observed in real time. Phys. Rev. Lett. 80, 936–939 (1998).

    Article  CAS  Google Scholar 

  38. Schowalter, S. J. et al. Blue-sky bifurcation of ion energies and the limits of neutral-gas sympathetic cooling of trapped ions. Nat. Commun. 7, 12448 (2016).

    Article  CAS  Google Scholar 

  39. Puri, P., Mills, M., West, E. P., Schneider, C. & Hudson, E. R. High-resolution collision energy control through ion position modulation in atom–ion hybrid systems. Rev. Sci. Instrum. 89, 083112 (2018).

    Article  Google Scholar 

  40. Grier, A. T., Cetina, M., Oručević, F. & Vuletić, V. Observation of cold collisions between trapped ions and trapped atoms. Phys. Rev. Lett. 102, 223201 (2009).

    Article  Google Scholar 

  41. Haze, S., Hata, S., Fujinaga, M. & Mukaiyama, T. Observation of elastic collisions between lithium atoms and calcium ions. Phys. Rev. A 87, 052715 (2013).

    Article  Google Scholar 

  42. Chen, K., Sullivan, S. T. & Hudson, E. R. Neutral gas sympathetic cooling of an ion in a Paul trap. Phys. Rev. Lett. 112, 143009 (2014).

    Article  Google Scholar 

  43. Rouse, I. & Willitsch, S. Superstatistical energy distributions of an ion in an ultracold buffer gas. Phys. Rev. Lett. 118, 143401 (2017).

    Article  CAS  Google Scholar 

  44. Dalgarno, A., McDowell, M. & Williams, A. The mobilities of ions in unlike gases. Phil. Trans. R. Soc. 250, 411–425 (1958).

    Article  Google Scholar 

  45. Langevin, P. A fundamental formula of kinetic theory. Ann. Chim. Phys 5, 245–288 (1905).

    CAS  Google Scholar 

  46. Pechukas, P., Light, J. C. & Rankin, C. Statistical theory of chemical kinetics: application to neutral atom–molecule reactions. J. Chem. Phys. 44, 794–805 (1966).

    Article  CAS  Google Scholar 

  47. Rice, O. K. & Ramsperger, H. C. Theories of unimolecular gas reactions at low pressures. J. Am. Chem. Soc. 49, 1617–1629 (1927).

    Article  CAS  Google Scholar 

  48. Dagdigian, P. J. Dependence of collision complex lifetime on product internal state: laser fluorescence detection of the Ca + NaCl crossed beam reaction. Chem. Phys. 21, 453–466 (1977).

    Article  CAS  Google Scholar 

  49. Frisch, M. J. et al. Gaussian 09, Revision B.01 (Gaussian, 2009).

  50. Werner, H.-J., Knowles, P. J., Knizia, G., Manby, F. R. & Schütz, M. Molpro: a general-purpose quantum chemistry program package. WIRES Comput. Mol. Sci. 2, 242–253 (2012).

    Article  CAS  Google Scholar 

  51. Staanum, P. F., Højbjerre, K., Skyt, P. S., Hansen, A. K. & Drewsen, M. Rotational laser cooling of vibrationally and translationally cold molecular ions. Nat. Phys. 6, 271–274 (2010).

    Article  CAS  Google Scholar 

  52. Rugango, R. et al. Sympathetic cooling of molecular ion motion to the ground state. New J. Phys. 17, 035009 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Science Foundation (PHY-1205311, PHY-1806653 and DGE-1650604) and the Army Research Office (W911NF-15-1-0121, W911NF-14-1-0378 and W911NF-13-1-0213).

Author information

Authors and Affiliations

Authors

Contributions

P.P. and M.M. acquired and analysed all experimental data presented in the work. P.P evaluated the phase space model for interpreting the experimental branching ratios. I.S., R.C. and P.P. provided the framework for the presented long-range capture model, while J.A.M. performed the electronic structure calculations utilized to understand short-range reaction dynamics. P.P., M.M., I.S., J.A.M. and R.C. contributed to the figures presented in the work. C.S. provided valuable experimental insight, and A.G.S. and E.R.H. provided guidance for the entire project and played key roles in merging the theoretical calculations with the experimental findings. P.P. and E.R.H. prepared the manuscript and all authors provided useful comments.

Corresponding author

Correspondence to Prateek Puri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Supplementary Figs. 1 and 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puri, P., Mills, M., Simbotin, I. et al. Reaction blockading in a reaction between an excited atom and a charged molecule at low collision energy. Nat. Chem. 11, 615–621 (2019). https://doi.org/10.1038/s41557-019-0264-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-019-0264-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing