Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution

Abstract

Defect engineering of metal–organic frameworks (MOFs) offers promising opportunities for tailoring their properties to specific functions and applications. However, determining the structures of defects in MOFs—either point defects or extended ones—has proved challenging owing to the difficulty of directly probing local structures in these typically fragile crystals. Here we report the real-space observation, with sub-unit-cell resolution, of structural defects in the catalytic MOF UiO-66 using a combination of low-dose transmission electron microscopy and electron crystallography. Ordered ‘missing linker’ and ‘missing cluster’ defects were found to coexist. The missing-linker defects, reconstructed three-dimensionally with high precision, were attributed to terminating formate groups. The crystallization of the MOF was found to undergo an Ostwald ripening process, during which the defects also evolve: on prolonged crystallization, only the missing-linker defects remained. These observations were rationalized through density functional theory calculations. Finally, the missing-cluster defects were shown to be more catalytically active than their missing-linker counterparts for the isomerization of glucose to fructose.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Structural illustration and characterizations of UiO-66 samples.
Fig. 2: HRTEM analysis of perfect and missing-linker regions in UiO-66-D.
Fig. 3: HRTEM analysis of the missing-cluster defects in UiO-66-D.
Fig. 4: Illustrations of various defective structures in UiO-66.
Fig. 5: Characterization and catalytic performances of various defective UiO-66 samples.

Data availability

The authors declare that all the data supporting the findings of this study are available within the paper and the Supplementary Information, and/or from the authors upon reasonable request.

References

  1. 1.

    Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999).

    CAS  Article  Google Scholar 

  2. 2.

    Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002).

    CAS  Article  Google Scholar 

  3. 3.

    Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    CAS  Article  Google Scholar 

  4. 4.

    Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nat. Chem. 1, 695–704 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    Eddaoudi, M., Sava, D. F., Eubank, J. F., Adil, K. & Guillerm, V. Zeolite-like metal–organic frameworks (ZMOFs): design, synthesis and properties. Chem. Soc. Rev. 44, 228–249 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Li, J.-R., Kuppler, R. J. & Zhou, H.-C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).

    CAS  Article  Google Scholar 

  7. 7.

    Férey, G. et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040–2042 (2005).

    Article  Google Scholar 

  8. 8.

    Chui, S. S.-Y., Lo, S. M.-F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283, 1148–1150 (1999).

    CAS  Article  Google Scholar 

  9. 9.

    Dissegna, S., Epp, K., Heinz, W. R., Kieslich, G. & Fischer, R. A. Defective metal–organic frameworks. Adv. Mater. 30, 1704501 (2018).

    Article  Google Scholar 

  10. 10.

    Fang, Z., Bueken, B., De Vos, D. E. & Fischer, R. A. Defect-engineered metal–organic frameworks. Angew. Chem. Int. Ed. 54, 7234–7254 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Bennett, T. D., Cheetham, A. K., Fuchs, A. H. & Coudert, F.-X. Interplay between defects, disorder and flexibility in metal–organic frameworks. Nat. Chem. 9, 11–16 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    Lee, J. et al. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009).

    CAS  Article  Google Scholar 

  13. 13.

    Sumida, K. et al. Carbon dioxide capture in metal–organic frameworks. Chem. Rev. 112, 724–781 (2012).

    CAS  Article  Google Scholar 

  14. 14.

    Shoaee, M., Agger, J. R., Anderson, M. W. & Attfield, M. P. Crystal form, defects and growth of the metal organic framework HKUST-1 revealed by atomic force microscopy. CrystEngComm 10, 646–648 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    Ling, S. & Slater, B. Dynamic acidity in defective UiO-66. Chem. Sci. 7, 4706–4712 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Cavka, J. H. et al. A new zirconium inorganic building brick forming metal–organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).

    Article  Google Scholar 

  17. 17.

    Jakobsen, S. et al. Structural determination of a highly stable metal–organic framework with possible application to interim radioactive waste scavenging: Hf-UiO-66. Phys. Rev. B 86, 125429 (2012).

    Article  Google Scholar 

  18. 18.

    Falaise, C. et al. Three-dimensional MOF-type architectures with tetravalent uranium hexanuclear motifs (U6O8). Chem. Eur. J. 19, 5324–5331 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    Shearer, G. C. et al. Defect engineering: tuning the porosity and composition of the metal–organic framework UiO-66 via modulated mynthesis. Chem. Mater. 28, 3749–3761 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Shearer, G. C. et al. Tuned to perfection: ironing out the defects in metal–organic framework UiO-66. Chem. Mater. 26, 4068–4071 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    Valenzano, L. et al. Disclosing the complex structure of UiO-66 metal–organic framework: a synergic combination of experiment and theory. Chem. Mater. 23, 1700–1718 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    Wu, H. et al. Unusual and highly tunable missing-linker defects in zirconium metal–organic framework UiO-66 and their important effects on gas adsorption. J. Am. Chem. Soc. 135, 10525–10532 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    Øien, S. et al. Detailed structure analysis of atomic positions and defects in zirconium metal–organic frameworks. Cryst. Growth Des. 14, 5370–5372 (2014).

    Article  Google Scholar 

  24. 24.

    Trickett, C. A. et al. Definitive molecular level characterization of defects in UiO-66 crystals. Angew. Chem. Int. Ed. 54, 11162–11167 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    Cliffe, M. J. et al. Correlated defect nanoregions in a metal–organic framework. Nat. Commun. 5, 4176 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    Schrimpf, W. et al. Chemical diversity in a metal–organic framework revealed by fluorescence lifetime imaging. Nat. Commun. 9, 1647 (2018).

    Article  Google Scholar 

  27. 27.

    Hashimoto, A., Suenaga, K., Gloter, A., Urita, K. & Iijima, S. Direct evidence for atomic defects in graphene layers. Nature 430, 870–873 (2004).

    CAS  Article  Google Scholar 

  28. 28.

    Platero-Prats, A. E. et al. Bridging zirconia nodes within a metal–organic framework via catalytic Ni-hydroxo clusters to form heterobimetallic nanowires. J. Am. Chem. Soc. 139, 10410–10418 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Mehdi, B. L. et al. Low-dose and in-painting methods for (near) atomic resolution STEM imaging of metal organic frameworks (MOFs). Microsc. Microanal. 23, 1804–1805 (2017).

    Article  Google Scholar 

  30. 30.

    Mayoral, A., Sanchez-Sanchez, M., Alfayate, A., Perez-Pariente, J. & Diaz, I. Atomic observations of microporous materials highly unstable under the electron beam: the cases of Ti-doped AlPO4-5 and Zn-MOF-74. ChemCatChem 7, 3719–3724 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    Leus, K. et al. Atomic layer deposition of Pt nanoparticles within the cages of MIL-101: a mild and recyclable hydrogenation catalyst. Nanomaterials 6, 45 (2016).

    Article  Google Scholar 

  32. 32.

    Zhu, Y. et al. Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy. Nat. Mater. 16, 532–537 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    Zhang, D. et al. Atomic-resolution transmission electron microscopy of electron beam-sensitive crystalline materials. Science 359, 675–679 (2018).

    CAS  Article  Google Scholar 

  34. 34.

    Sakamoto, Y. et al. Direct imaging of the pores and cages of three-dimensional mesoporous materials. Nature 408, 449–453 (2000).

    CAS  Article  Google Scholar 

  35. 35.

    Han, Y. et al. A tri-continuous mesoporous material with a silica pore wall following a hexagonal minimal surface. Nat. Chem. 1, 123–127 (2009).

    CAS  Article  Google Scholar 

  36. 36.

    Vandichel, M. et al. Active site engineering in UiO-66 type metal–organic frameworks by intentional creation of defects: a theoretical rationalization. CrystEngComm 17, 395–406 (2015).

    CAS  Article  Google Scholar 

  37. 37.

    Taddei, M., Wakeham, R. J., Koutsianos, A., Andreoli, E. & Barron, A. R. Post-synthetic ligand exchange in zirconium-based metal–organic frameworks: beware of the defects! Angew. Chem. Int. Ed. 57, 11706–11710 (2018).

    CAS  Article  Google Scholar 

  38. 38.

    Vermoortele, F. et al. Synthesis modulation as a tool to increase the catalytic activity of metal–organic frameworks: the unique case of UiO-66(Zr). J. Am. Chem. Soc. 135, 11465–11468 (2013).

    CAS  Article  Google Scholar 

  39. 39.

    Korzyński, M. D., Consoli, D. F., Zhang, S., Román-Leshkov, Y. & Dincă, M. Activation of methyltrioxorhenium for olefin metathesis in a zirconium-based metal–organic framework. J. Am. Chem. Soc. 140, 6956–6960 (2018).

    Article  Google Scholar 

  40. 40.

    Liu, Y., Klet, R. C., Hupp, J. T. & Farha, O. Probing the correlations between the defects in metal–organic frameworks and their catalytic activity by an epoxide ring-opening reaction. Chem. Commun. 52, 7806–7809 (2016).

    CAS  Article  Google Scholar 

  41. 41.

    De Mello, M. D. & Tsapatsis, M. Selective glucose-to-fructose isomerization over modified zirconium UiO-66 in alcohol media. ChemCatChem 10, 2417–2423 (2018).

    Article  Google Scholar 

  42. 42.

    Sholl, D. S. & Lively, R. P. Defects in metal–organic frameworks: challenge or opportunity? J. Phys. Chem. Lett. 6, 3437–3444 (2015).

    CAS  Article  Google Scholar 

  43. 43.

    Park, J., Howe, J. D. & Sholl, D. S. How reproducible are isotherm measurements in metal–organic frameworks? Chem. Mater. 29, 10487–10495 (2017).

    CAS  Article  Google Scholar 

  44. 44.

    Jones, J. T. A. et al. Modular and predictable assembly of porous organic molecular crystals. Nature 474, 367–371 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Competitive Center Funds (FCC/1/1972-19) to Y.H. and M.E. from King Abdullah University of Science and Technology. This research used resources of the Core Labs of King Abdullah University of Science and Technology. Yi.Z. acknowledges financial support from the National Natural Science Foundation of China (21771161) and the Thousand Talents Program for Distinguished Young Scholars. S.L. and B.S. are thankful to the Materials Chemistry Consortium (EPSRC: EP/L000202) for provision of computer time on ARCHER UK National Supercomputing Service. B.S. acknowledges the Royal Society for financial support through an industry fellowship (F160062). The authors acknowledge helpful discussions with A. Goodwin, M. Cliffe and G. Shearer.

Author information

Affiliations

Authors

Contributions

Y.H., D.Z. and M.E. conceived and designed the experiments. L.L. acquired the low-dose high-resolution HRTEM images. Z.C., J.W., Y.B. and K.A. designed and synthesized MOF samples. Z.C., J.W. and Y.B. performed X-ray diffraction and N2 adsorption characterizations. L.L., D.Z., Yi.Z. and Y.H. processed and analysed the HRTEM images. D.Z. solved the 3D structure of the missing-linker defect. S.L. and B.S. performed theoretical calculations. J.W., Yu.Z. and K.-W.H. designed and performed the catalytic reactions. Y.H., D.Z., M.E., S.L. and B.S. wrote the manuscript and all authors commented on the manuscript.

Corresponding authors

Correspondence to Daliang Zhang or Ben Slater or Mohamed Eddaoudi or Yu Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Methods; Supplementary Figs. 1–16; Supplementary Tables 1–5; Supplementary refs. 1–14

Crystallographic data

Atomic coordinates of optimised fcu structure

Crystallographic data

Atomic coordinates of optimised bcu structure

Crystallographic data

Atomic coordinates of optimised reo structure

Crystallographic data

Atomic coordinates of optimised scu structure

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Chen, Z., Wang, J. et al. Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution. Nat. Chem. 11, 622–628 (2019). https://doi.org/10.1038/s41557-019-0263-4

Download citation

Further reading