Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of autoinducing thiodepsipeptides from staphylococci enabled by native chemical ligation

Abstract

Staphylococci secrete autoinducing peptides (AIPs) as signalling molecules to regulate population-wide behaviour. AIPs from non-Staphylococcus aureus staphylococci have received attention as potential antivirulence agents to inhibit quorum sensing and virulence gene expression in the human pathogen Staphylococcus aureus. However, only a limited number of AIP structures from non-S. aureus staphylococci have been identified to date, as the minute amounts secreted in complex media render it difficult. Here, we report a method for the identification of AIPs by exploiting their thiolactone functionality for chemoselective trapping and enrichment of the compounds from the bacterial supernatant. Standard liquid chromatography mass spectrometry analysis, guided by genome sequencing data, then readily provides the AIP identities. Using this approach, we confirm the identity of five known AIPs and identify the AIPs of eleven non-S. aureus species, and we expect that the method should be extendable to AIP-expressing Gram-positive bacteria beyond the Staphylococcus genus.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the reported workflow.
Fig. 2: NCL trapping and sequence-guided identification of AIP-II (2).
Fig. 3: Synthesis of AIPs.
Fig. 4: Detection limit of NCL trapping for synthetic L. monocytogenes AIP (20).

Similar content being viewed by others

Data availability

Primary sequencing data are deposited at the National Centre for Biotechnology Information (NCBI GenBank). All other data generated and analysed during this study are available in the article and its Supplementary Information. Further details are available from the corresponding author on request.

References

  1. Ji, G., Beavis, R. C. & Novick, R. P. Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc. Natl Acad. Sci. USA 92, 12055–12059 (1995).

    Article  CAS  Google Scholar 

  2. Novick, R. P. & Geisinger, E. Quorum sensing in staphylococci. Annu. Rev. Genet. 42, 541–564 (2008).

    Article  CAS  Google Scholar 

  3. Thoendel, M., Kavanaugh, J. S., Flack, C. E. & Horswill, A. R. Peptide signaling in the staphylococci. Chem. Rev. 111, 117–151 (2011).

    Article  CAS  Google Scholar 

  4. Wang, B. & Muir, T. W. Regulation of virulence in Staphylococcus aureus: molecular mechanisms and remaining puzzles. Cell Chem. Biol. 23, 214–224 (2016).

    Article  CAS  Google Scholar 

  5. Ji, G., Beavis, R. & Novick, R. P. Bacterial interference caused by autoinducing peptide variants. Science 276, 2027–2030 (1997).

    Article  CAS  Google Scholar 

  6. Otto, M., Süßmuth, R., Vuong, C., Jung, G. & Götz, F. Inhibition of virulence factor expression in Staphylococcus aureus by the Staphylococcus epidermidis agr pheromone and derivatives. FEBS Lett. 450, 257–262 (1999).

    Article  CAS  Google Scholar 

  7. Mayville, P. et al. Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc. Natl Acad. Sci. USA 96, 1218–1223 (1999).

    Article  CAS  Google Scholar 

  8. McDowell, P. et al. Structure, activity and evolution of the group I thiolactone peptide quorum-sensing system of Staphylococcus aureus. Mol. Microbiol. 41, 503–512 (2001).

    Article  CAS  Google Scholar 

  9. Lyon, G. J., Mayville, P., Muir, T. W. & Novick, R. P. Rational design of a global inhibitor of the virulence response in Staphylococcus aureus, based in part on localization of the site of inhibition to the receptor-histidine kinase AgrC. Proc. Natl Acad. Sci. USA 97, 13330–13335 (2000).

    Article  CAS  Google Scholar 

  10. Lyon, G. J., Wright, J. S., Muir, T. W. & Novick, R. P. Key determinants of receptor activation in the agr autoinducing peptides of Staphylococcus aureus. Biochemistry 41, 10095–10104 (2002).

    Article  CAS  Google Scholar 

  11. George, E. A., Novick, R. P. & Muir, T. W. Cyclic peptide inhibitors of staphylococcal virulence prepared by Fmoc-based thiolactone peptide synthesis. J. Am. Chem. Soc. 130, 4914–4924 (2008).

    Article  CAS  Google Scholar 

  12. Tal-Gan, Y., Stacy, D. M., Foegen, M. K., Koenig, D. W. & Blackwell, H. E. Highly potent inhibitors of quorum sensing in Staphylococcus aureus revealed through a systematic synthetic study of the group-III autoinducing peptide. J. Am. Chem. Soc. 135, 7869–7882 (2013).

    Article  CAS  Google Scholar 

  13. Tal-Gan, Y., Stacy, D. M. & Blackwell, H. E. N-Methyl and peptoid scans of an autoinducing peptide reveal new structural features required for inhibition and activation of AgrC quorum sensing receptors in Staphylococcus aureus. Chem. Commun. 50, 3000–3003 (2014).

    Article  CAS  Google Scholar 

  14. Johnson, J. G., Wang, B., Debelouchina, G. T., Novick, R. P. & Muir, T. W. Increasing AIP macrocycle size reveals key features of agr activation in Staphylococcus aureus. ChemBioChem 16, 1093–1100 (2015).

    Article  CAS  Google Scholar 

  15. Tal-Gan, Y., Ivancic, M., Cornilescu, G., Yang, T. & Blackwell, H. E. Highly stable, amide-bridged autoinducing peptide analogues that strongly inhibit the AgrC quorum sensing receptor in Staphylococcus aureus. Angew. Chem. Int. Ed. 55, 8913–8917 (2016).

    Article  CAS  Google Scholar 

  16. Hansen, A. M. et al. Lactam hybrid analogues of solonamide B and autoinducing peptides as potent S. aureus AgrC antagonists. Eur. J. Med. Chem. 152, 370–376 (2018).

    Article  CAS  Google Scholar 

  17. Yang, T., Tal-Gan, Y., Paharik, A. E., Horswill, A. R. & Blackwell, H. E. Structure–function analyses of a Staphylococcus epidermidis autoinducing peptide reveals motifs critical for AgrC-type receptor modulation. ACS Chem. Biol. 11, 1982–1991 (2016).

    Article  CAS  Google Scholar 

  18. Canovas, J. et al. Cross-talk between Staphylococcus aureus and other staphylococcal species via the agr quorum sensing system. Front. Microbiol. 7, 1733 (2016).

    Article  Google Scholar 

  19. Gless, B. H. et al. Structure–activity relationship study based on autoinducing peptide (AIP) from dog pathogen S. schleiferi. Org. Lett. 19, 5276–5279 (2017).

    Article  CAS  Google Scholar 

  20. Paharik, A. E. et al. Coagulase-negative staphylococcal strain prevents Staphylococcus aureus colonization and skin infection by blocking quorum sensing. Cell Host Microbe 22, 746–756 (2017).

    Article  CAS  Google Scholar 

  21. Gordon, C. P., Olson, S. D., Lister, J. L., Kavanaugh, J. S. & Horswill, A. R. Truncated autoinducing peptides as antagonists of Staphylococcus lugdunensis quorum sensing. J. Med. Chem. 59, 8879–8888 (2016).

    Article  CAS  Google Scholar 

  22. Otto, M., Süßmuth, R., Jung, G. & Götz, F. Structure of the pheromone peptide of the Staphylococcus epidermidis agr system. FEBS Lett. 424, 89–94 (1998).

    Article  CAS  Google Scholar 

  23. Jarraud, S. et al. Exfoliatin-producing strains define a fourth agr specificity group in Staphylococcus aureus. J. Bacteriol. 182, 6517–6522 (2000).

    Article  CAS  Google Scholar 

  24. Kalkum, M., Lyon, G. J. & Chait, B. T. Detection of secreted peptides by using hypothesis-driven multistage mass spectrometry. Proc. Natl Acad. Sci. USA 100, 2795–2800 (2003).

    Article  CAS  Google Scholar 

  25. Olson, M. E. et al. Staphylococcus epidermidis agr quorum-sensing system: signal identification, cross talk, and importance in colonization. J. Bacteriol. 196, 3482–3493 (2014).

    Article  CAS  Google Scholar 

  26. Todd, D. A. et al. Signal Biosynthesis Inhibition with Ambuic Acid as a Strategy To Target Antibiotic-Resistant Infections. Antimicrob. Agents Chemother. 61, e00263-17 (2017).

    Article  Google Scholar 

  27. Tsuda, S., Yoshiya, T., Mochizuki, M. & Nishiuchi, Y. Synthesis of cysteine-rich peptides by native chemical ligation without use of exogenous thiols. Org. Lett. 17, 1806–1809 (2015).

    Article  CAS  Google Scholar 

  28. Wang, B., Zhao, A., Novick, R. P. & Muir, T. W. Key driving forces in the biosynthesis of autoinducing peptides required for staphylococcal virulence. Proc. Natl Acad. Sci. USA 112, 10679–10684 (2015).

    Article  CAS  Google Scholar 

  29. Rink, H. Solid-phase synthesis of protected peptide fragments using a trialkoxy-diphenyl-methylester resin. Tetrahedron Lett. 28, 3787–3790 (1987).

    Article  CAS  Google Scholar 

  30. Dufour, P. et al. High genetic variability of the agr locus in Staphylococcus species. J. Bacteriol. 184, 1180–1186 (2002).

    Article  CAS  Google Scholar 

  31. Pyörälä, S. & Taponen, S. Coagulase-negative staphylococci—emerging mastitis pathogens. Vet. Microbiol. 134, 3–8 (2009).

    Article  Google Scholar 

  32. Devriese, L. A., Hájek, V., Oeding, P., Meyer, S. A. & Schleifer, K. H. Staphylococcus hyicus (Sompolinsky 1953) comb. nov. and Staphylococcus hyicus subsp. chromogenes subsp. nov. Int. J. Syst. Evol. Microbiol. 28, 482–490 (1978).

    Google Scholar 

  33. Tong, S. Y. et al. Novel staphylococcal species that form part of a Staphylococcus aureus-related complex: the non-pigmented Staphylococcus argenteus sp. nov. and the non-human primate-associated Staphylococcus schweitzeri sp. nov. Int. J. Syst. Evol. Microbiol. 65, 15–22 (2015).

    Article  CAS  Google Scholar 

  34. Novick, R. P., Ross, H. F., Figueiredo, A. M. S., Abramochkin, G. & Muir, T. W. Activation and inhibition of the staphylococcal AGR system. Science 287, 391 (2000).

    Article  Google Scholar 

  35. Kamath, U., Singer, C. & Isenberg, H. D. Clinical significance of Staphylococcus warneri bacteremia. J. Clin. Microbiol. 30, 261–264 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Webster, J. A. et al. Identification of the Staphylococcus sciuri species group with EcoRI fragments containing rRNA sequences and description of Staphylococcus vitulus sp. nov. Int. J. Syst. Evol. Microbiol. 44, 454–460 (1994).

    CAS  Google Scholar 

  37. Nakatsuji, T. et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci. Transl. Med. 9, eaah4680 (2017).

    Article  Google Scholar 

  38. Barros, E. M., Ceotto, H., Bastos, M. C. F., dos Santos, K. R. N. & Giambiagi-deMarval, M. Staphylococcus haemolyticus as an important hospital pathogen and carrier of methicillin resistance genes. J. Clin. Microbiol. 50, 166–168 (2012).

    Article  CAS  Google Scholar 

  39. Robinson, D. A., Monk, A. B., Cooper, J. E., Feil, E. J. & Enright, M. C. Evolutionary genetics of the accessory gene regulator (agr) locus in Staphylococcus aureus. J. Bacteriol. 187, 8312–8321 (2005).

    Article  CAS  Google Scholar 

  40. Thoendel, M. & Horswill, A. R. Biosynthesis of peptide signals in Gram-positive bacteria. Adv. Appl. Microbiol. 71, 91–112 (2010).

    Article  CAS  Google Scholar 

  41. Autret, N., Raynaud, C., Dubail, I., Berche, P. & Charbit, A. Identification of the agr locus of Listeria monocytogenes: role in bacterial virulence. Infect. Immun. 71, 4463–4471 (2003).

    Article  CAS  Google Scholar 

  42. Riedel, C. U. et al. AgrD‐dependent quorum sensing affects biofilm formation, invasion, virulence and global gene expression profiles in Listeria monocytogenes. Mol. Microbiol. 71, 1177–1189 (2009).

    Article  CAS  Google Scholar 

  43. Vivant, A.-L., Garmyn, D., Gal, L. & Piveteau, P. The Agr communication system provides a benefit to the populations of Listeria monocytogenes in soil. Front. Cell. Infect. Microbiol. 4, 160 (2014).

    Article  Google Scholar 

  44. Zetzmann, M., Sánchez-Kopper, A., Waidmann, M. S., Blombach, B. & Riedel, C. U. Identification of the agr peptide of Listeria monocytogenes. Front. Microbiol. 7, 989 (2016).

    Article  Google Scholar 

  45. Piewngam, P. et al. Pathogen elimination by probiotic Bacillus via signalling interference. Nature 562, 532–537 (2018).

    Article  CAS  Google Scholar 

  46. Lee, A. S. et al. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers 4, 18033 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

We thank P. Martín-Gago for fruitful input and T.W. Muir for encouraging comments. P. S. Andersen is acknowledged for providing bacterial strains. This work was supported by the Carlsberg Foundation (2013-01-0333 to C.A.O.) and University of Copenhagen (PhD fellowship to B.H.G.).

Author information

Authors and Affiliations

Authors

Contributions

B.H.G. and C.A.O. conceptualized the study. B.H.G., M.S.B., P.P. and M.B. performed the experiments. B.H.G. and C.A.O. wrote the original draft of the manuscript. B.H.G., M.S.B., H.I. and C.A.O. reviewed and edited the final manuscript. C.A.O. acquired funding. H.I. and C.A.O. provided resources and materials. H.I. and C.A.O. supervised the study.

Corresponding author

Correspondence to Christian A. Olsen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary experimental data, chemical compound characterization data, Supplementary Figs. 1–26, Supplementary Tables 1–3 and copies of 1H and 13C NMR spectra.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gless, B.H., Bojer, M.S., Peng, P. et al. Identification of autoinducing thiodepsipeptides from staphylococci enabled by native chemical ligation. Nat. Chem. 11, 463–469 (2019). https://doi.org/10.1038/s41557-019-0256-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-019-0256-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing