Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Practical and regioselective amination of arenes using alkyl amines

Abstract

The formation of carbon–nitrogen bonds for the preparation of aromatic amines is among the top five reactions carried out globally for the production of high-value materials, ranging from from bulk chemicals to pharmaceuticals and polymers. As a result of this ubiquity and diversity, methods for their preparation impact the full spectrum of chemical syntheses in academia and industry. In general, these molecules are assembled through the stepwise introduction of a reactivity handle in place of an aromatic C–H bond (that is, a nitro group, halogen or boronic acid) and a subsequent functionalization or cross-coupling. Here we show that aromatic amines can be constructed by direct reaction of arenes and alkyl amines using photocatalysis, without the need for pre-functionalization. The process enables the easy preparation of advanced building blocks, tolerates a broad range of functionalities, and multigram scale can be achieved via a batch-to-flow protocol. The merit of this strategy as a late-stage functionalization platform has been demonstrated by the modification of several drugs, agrochemicals, peptides, chiral catalysts, polymers and organometallic complexes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Amination of aromatics.
Fig. 2: Development of a photocatalytic strategy for direct aromatic C–H amination.
Fig. 3: Late-stage diversification of bioactive molecules via photoredox C–H amination.
Fig. 4: Applications of the aromatic C–H amination reaction.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the Supplementary Information. These include reaction procedures, products characterization, the batch-to-flow experiment procedure, the microscale parallel screening procedure, cyclic voltammograms and UV–vis, density functional theory and NMR spectra.

References

  1. Ricci, A. Amino Group Chemistry: From Synthesis to the Life Sciences (Wiley, Hoboken, 2008).

  2. Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    Article  CAS  Google Scholar 

  3. Roughley, S. D. & Jordan, A. M. The medicinal chemist’s toolbox: an analysis of reactions used in the pursuit of drug candidates. J. Med. Chem. 54, 3451–3479 (2011).

    Article  CAS  Google Scholar 

  4. Ruiz-Castillo, P. & Buchwald, S. L. Applications of palladium-catalyzed C−N cross-coupling reactions. Chem. Rev. 116, 12564–12649 (2016).

    Article  CAS  Google Scholar 

  5. Hartwig, J. F. Evolution of a fourth generation catalyst for the amination and thioetherification of aryl halides. Acc. Chem. Res. 41, 1534–1544 (2008).

    Article  CAS  Google Scholar 

  6. Corcoran, E. B. et al. Aryl amination using ligand-free Ni(ii) salts and photoredox catalysis. Science 353, 279–283 (2016).

    Article  CAS  Google Scholar 

  7. Creutz, S. E., Lotito, K. J., Fu, G. C., Peters, J. C. & Ullmann, C. –N. Photoinduced coupling: demonstrating the viability of a radical pathway. Science 338, 647–651 (2012).

    Article  CAS  Google Scholar 

  8. Santanilla, A. B. et al. Nanomole-scale high-throughput chemistry for the synthesis of complex molecules. Science 347, 44–49 (2015).

    Article  Google Scholar 

  9. Jiao, J., Murakami, K. & Itami, K. Catalytic methods for aromatic C–H amination: an ideal strategy for nitrogen-based functional molecules. ACS Catal. 6, 610–633 (2016).

    Article  CAS  Google Scholar 

  10. Allen, L. J., Cabrera, P. J., Lee, M. & Sanford, M. S. N-Acyloxyphthalimides as nitrogen radical precursors in the visible light photocatalyzed room temperature C–H amination of arenes and heteroarenes. J. Am. Chem. Soc. 136, 5607–5610 (2014).

    Article  CAS  Google Scholar 

  11. Foo, K., Sella, E., Thomé, I., Eastgate, M. D. & Baran, P. S. A mild, ferrocene-catalyzed C–H imidation of (hetero)arenes. J. Am. Chem. Soc. 136, 5279–5282 (2014).

    Article  CAS  Google Scholar 

  12. Boursalian, G. B., Ham, W. S., Mazzotti, A. R. & Ritter, T. Charge-transfer-directed radical substitution enables para-selective C–H functionalization. Nat. Chem. 8, 810–815 (2016).

    Article  CAS  Google Scholar 

  13. Romero, N. A., Margrey, K. A., Tay, N. E. & Nicewicz, D. A. Site-selective arene C-H amination via photoredox catalysis. Science 349, 1326–1330 (2015).

    Article  CAS  Google Scholar 

  14. Morofuji, T., Shimizu, A. & Yoshida, J. Direct C–N coupling of imidazoles with aromatic and benzylic compounds via electrooxidative C–H functionalization. J. Am. Chem. Soc. 136, 4496–4499 (2014).

    Article  CAS  Google Scholar 

  15. Paudyal, M. P. et al. Dirhodium-catalyzed C-H arene amination using hydroxylamines. Science 353, 1144–1147 (2016).

    Article  CAS  Google Scholar 

  16. Legnani, L., Cerai, G. P. & Morandi, B. Direct and practical synthesis of primary anilines through iron-catalyzed C−H bond amination. ACS Catal. 6, 8162–8165 (2016).

    Article  CAS  Google Scholar 

  17. An, X.-D. & Yu, S. Photoredox-catalyzed C(sp 2)–N coupling reactions. Tetrahedron Lett. 59, 1605 (2018).

    Article  CAS  Google Scholar 

  18. Chow, Y. L., Danen, W. C., Nelsen, S. F. & Rosenblatt, D. H. Nonaromatic aminium radicals. Chem. Rev. 78, 243–274 (1978).

    Article  CAS  Google Scholar 

  19. Svejstrup, T. D., Ruffoni, A., Julia, F., Aubert, V. M. & Leonori, D. Synthesis of arylamines via aminium radicals. Angew. Chem. Int. Ed. 56, 14948–14952 (2017).

    Article  CAS  Google Scholar 

  20. Margrey, K. A., Levens, A. & Nicewicz, D. A. Direct aryl C–H amination with primary amines using organic photoredox catalysis. Angew. Chem. Int. Ed. 56, 15644–15648 (2017).

    Article  CAS  Google Scholar 

  21. Goldberg, F. W., Kettle, J. G., Kogej, T., Perry, M. W. D. & Tomkinson, N. P. Designing novel building blocks is an overlooked strategy to improve compound quality. Drug Discov. Today 20, 11–17 (2015).

    Article  Google Scholar 

  22. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    Article  CAS  Google Scholar 

  23. Lee, S. J., Terrazas, M. S., Pippel, D. J. & Beak, P. Mechanism of electrophilic chlorination: experimental determination of a geometrical requirement for chlorine transfer by the endocyclic restriction test. J. Am. Chem. Soc. 125, 7307–7312 (2003).

    Article  CAS  Google Scholar 

  24. Xiong, X. & Yeung, Y.-Y. Highly ortho-selective chlorination of anilines using a secondary ammonium salt organocatalyst. Angew. Chem. Int. Ed. 55, 16101–16105 (2016).

    Article  CAS  Google Scholar 

  25. Minisci, F. Novel applications of free-radical reactions in preparative organic chemistry. Synthesis 1973, 1–24 (1973).

    Article  Google Scholar 

  26. Cosgrove, S. C., Plane, J. M. C. & Marsden, S. P. Radical-mediated direct C–H amination of arenes with secondary amines. Chem. Sci. 9, 6647–6652 (2018).

    Article  CAS  Google Scholar 

  27. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    Article  CAS  Google Scholar 

  28. Musacchio, A. J. et al. Catalytic intermolecular hydroaminations of unactivated olefins with secondary alkyl amines. Science 355, 727 (2017).

    Article  CAS  Google Scholar 

  29. Citterio, A. et al. Polar effects in fee radical reactions. homlytic aromatic amination by the amino radical cation, •+NH3: reactivity and selectivity. J. Org. Chem. 49, 4479–4482 (1984).

    Article  CAS  Google Scholar 

  30. Colomer, I., Chamberlain, A. E. R., Haughey, M. B. & Donohoe, T. J. Hexafluoroisopropanol as a highly versatile solvent. Nat. Rev. Chem. 1, 0088 (2017).

    Article  CAS  Google Scholar 

  31. Tang, R.-J., Milcent, T. & Crousse, B. Regioselective halogenation of arenes and heterocycles in hexafluoroisopropanol. J. Org. Chem. 83, 930–938 (2018).

    Article  CAS  Google Scholar 

  32. Nguyen, J. D., Reiß, B., Dai, C. & Stephenson, C. R. J. Batch to flow deoxygenation using visible light photoredox catalysis. Chem. Commun. 49, 4352–4354 (2013).

    Article  CAS  Google Scholar 

  33. Cambié, D., Bottecchia, C., Straathof, N. J. W., Hessel, V. & Noël, T. Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment. Chem. Rev. 116, 10276–10341 (2016).

    Article  Google Scholar 

  34. Wang, H.-W. et al. Ligand-promoted rhodium(iii)-catalyzed ortho-C−H amination with free amines. Angew. Chem. Int. Ed. 56, 7449–7453 (2017).

    Article  CAS  Google Scholar 

  35. Rosane, J. & Daugulis, O. A general method for aminoquinoline-directed, copper-catalyzed sp 2 C–H bond amination. J. Am. Chem. Soc. 138, 4601–4607 (2016).

    Article  Google Scholar 

  36. Yoo, E. J., Ma, S., Mei, T.-S., Chan, K. S. L. & Yu, J.-Q. Pd-catalyzed Intermolecular C–H amination with alkylamines. J. Am. Chem. Soc. 133, 7652–7655 (2011).

    Article  CAS  Google Scholar 

  37. Carreira, E. M. & Fessard, T. C. Four-membered ring-containing spirocycles: synthetic strategies and opportunities. Chem. Rev. 114, 8257–8322 (2014).

    Article  CAS  Google Scholar 

  38. Willcox, D. et al. A general catalytic β-C–H carbonylation of aliphatic amines to β-lactams. Science 354, 851–857 (2016).

    Article  CAS  Google Scholar 

  39. Wanka, L., Iqbal, K. & Schreiner, P. R. The lipophilic bullet hits the targets: medicinal chemistry of adamantane derivatives. Chem. Rev. 113, 3516–3604 (2013).

    Article  CAS  Google Scholar 

  40. Immel, O. et al. Catalyst for the preparation of aniline. US patent 5,304,525A (1994).

  41. Krska, S. W., DiRocco, D. A., Dreher, S. D. & Shevlin, M. The evolution of chemical high-throughput experimentation to address challenging problems in pharmaceutical synthesis. Acc. Chem. Res. 50, 2976–2985 (2017).

    Article  CAS  Google Scholar 

  42. Gesmundo, N. J. et al. Nanoscale synthesis and affinity ranking. Nature 557, 228–232 (2018).

    Article  CAS  Google Scholar 

  43. Vinogradova, E. V., Zhang, C., Spokoyny, A. M., Pentelute, B. L. & Buchwald, S. L. Organometallic palladium reagents for cysteine bioconjugation. Nature 526, 687–691 (2025).

    Article  Google Scholar 

  44. Bloom, S. et al. Decarboxylative alkylation for site-selective bioconjugation of native proteins via oxidation potentials. Nat. Chem. 10, 205–211 (2018).

    Article  CAS  Google Scholar 

  45. Osberger, T. J., Rogness, D. C., Kohrt, J. T., Stepan, A. F. & White, M. C. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis. Nature 537, 214–219 (2016).

    Article  CAS  Google Scholar 

  46. deGruyter, J. N., Malins, L. R. & Baran, P. S. Residue-specific peptide modification: a chemist’s guide. Biochemistry 56, 3863–3873 (2017).

    Article  CAS  Google Scholar 

  47. Boutureira, O. & Bernardes, G. J. L. Advances in chemical protein modification. Chem. Rev. 115, 2174–2195 (2015).

    Article  CAS  Google Scholar 

  48. Blasco, E., Sims, M. B., Goldmann, A. S., Sumerlin, B. S. & Barner-Kowollik, C. Polymer functionalization. Macromolecules 50, 5215–5252 (2017).

    Article  CAS  Google Scholar 

  49. Bomben, P. G., Robson, K. C. D., Sedach, P. A. & Berlinguette, C. P. On the viability of cyclometalated Ru(ii) complexes for light-harvesting applications. Inorg. Chem. 48, 9631–9643 (2009).

    Article  CAS  Google Scholar 

  50. Ma, D. L. et al. Antagonizing STAT3 dimerization with a rhodium(iii) complex. Angew. Chem. Int. Ed. 53, 9178–9182 (2014).

    Article  CAS  Google Scholar 

  51. Gagliardo, M. et al. Organic transformations on σ-aryl organometallic complexes. Angew. Chem. Int. Ed. 46, 8558–8573 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Simonetti and F. Juliá-Hernandez for useful discussions. D.L. thanks EPSRC for a Fellowship (EP/P004997/1) and the European Research Council for a research grant (758427). A.R. thanks the Marie Curie Actions for a Fellowship (703238).

Author information

Authors and Affiliations

Authors

Contributions

A.R., F.J. and D.L. designed the project. A.R., F.J., T.D.S. and A.J.M. performed all the synthetic experiments. J.J.D. performed the batch-to-flow optimization and scale-up. All authors analysed the results and wrote the manuscript.

Corresponding author

Correspondence to Daniele Leonori.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Synthetic procedures; products characterization; electrochemical, UV–vis, emission quenching and DFT studies; NMR spectra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruffoni, A., Juliá, F., Svejstrup, T.D. et al. Practical and regioselective amination of arenes using alkyl amines. Nat. Chem. 11, 426–433 (2019). https://doi.org/10.1038/s41557-019-0254-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-019-0254-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing