The ultrafast photoinduced ring-opening of 1,3-cyclohexadiene constitutes a textbook example of electrocyclic reactions in organic chemistry and a model for photobiological reactions in vitamin D synthesis. Although the relaxation from the photoexcited electronic state during the ring-opening has been investigated in numerous studies, the accompanying changes in atomic distance have not been resolved. Here we present a direct and unambiguous observation of the ring-opening reaction path on the femtosecond timescale and subångström length scale using megaelectronvolt ultrafast electron diffraction. We followed the carbon–carbon bond dissociation and the structural opening of the 1,3-cyclohexadiene ring by the direct measurement of time-dependent changes in the distribution of interatomic distances. We observed a substantial acceleration of the ring-opening motion after internal conversion to the ground state due to a steepening of the electronic potential gradient towards the product minima. The ring-opening motion transforms into rotation of the terminal ethylene groups in the photoproduct 1,3,5-hexatriene on the subpicosecond timescale.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The codes used for the analysis of the raw experimental and simulation data and for the generation of the manuscript figures are available from the corresponding authors upon reasonable request. TeraChem is a proprietary quantum chemistry software suite developed by T. Martínez and is available via the proper license set forth by © PetaChem, LLC.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Arruda, B. C. & Sension, R. J. Ultrafast polyene dynamics: the ring opening of 1,3-cyclohexadiene derivatives. Phys. Chem. Chem. Phys. 16, 4439–4455 (2014).

  2. 2.

    Havinga, E. & Schlatmann, J. L. M. A. Remarks on the specificities of the photochemical and thermal transformations in the vitamin D field. Tetrahedron 16, 146–152 (1961).

  3. 3.

    Woodward, R. B. & Hoffmann, R. The conservation of orbital symmetry. Angew. Chem. Int. Ed. 8, 781–853 (1969).

  4. 4.

    Bach, T. & Hehn, J. P. Photochemical reactions as key steps in natural product synthesis. Angew. Chem. Int. Ed. 50, 1000–1045 (2011).

  5. 5.

    Irie, M. Diarylethenes for memories and switches. Chem. Rev. 100, 1685–1716 (2000).

  6. 6.

    Deb, S. & Weber, P. M. The ultrafast pathway of photon-induced electrocyclic ring-opening reactions: the case of 1,3-cyclohexadiene. Annu. Rev. Phys. Chem. 62, 19–39 (2011).

  7. 7.

    Hofmann, A. & de Vivie-Riedle, R. Quantum dynamics of photoexcited cyclohexadiene introducing reactive coordinates. J. Chem. Phys. 112, 5054–5059 (2000).

  8. 8.

    Celani, P., Ottani, S., Olivucci, M., Bernardi, F. & Robb, M. A. What happens during the picosecond lifetime of 2A1 cyclohexa-1,3-diene? A CAS-SCF study of the cyclohexadiene/hexatriene photochemical interconversion. J. Am. Chem. Soc. 116, 10141–10151 (1994).

  9. 9.

    Ruan, C.-Y. et al. Ultrafast diffraction and structural dynamics: the nature of complex molecules far from equilibrium. Proc. Natl Acad. Sci. USA 98, 7117–7122 (2001).

  10. 10.

    Pullen, S. H., Anderson, N. A., Walker, L. A. & Sension, R. J. The ultrafast photochemical ring-opening reaction of 1,3-cyclohexadiene in cyclohexane. J. Chem. Phys. 108, 556–563 (1998).

  11. 11.

    Cardoza, J. D., Dudek, R. C., Mawhorter, R. J. & Weber, P. M. Centering of ultrafast time-resolved pump–probe electron diffraction patterns. Chem. Phys. 299, 307–312 (2004).

  12. 12.

    Attar, A. R. et al. Femtosecond X-ray spectroscopy of an electrocyclic ring-opening reaction. Science 356, 54–59 (2017).

  13. 13.

    Adachi, S., Sato, M. & Suzuki, T. Direct observation of ground-state product formation in a 1,3-cyclohexadiene ring-opening reaction. J. Phys. Chem. Lett. 6, 343–346 (2015).

  14. 14.

    Pemberton, C. C., Zhang, Y., Saita, K., Kirrander, A. & Weber, P. M. From the (1B) spectroscopic state to the photochemical product of the ultrafast ring-opening of 1,3-cyclohexadiene: a spectral observation of the complete reaction path. J. Phys. Chem. A 119, 8832–8845 (2015).

  15. 15.

    Kotur, M., Weinacht, T., Pearson, B. J. & Matsika, S. Closed-loop learning control of isomerization using shaped ultrafast laser pulses in the deep ultraviolet. J. Chem. Phys. 130, 134311 (2009).

  16. 16.

    Wolf, T. J. A. et al. Probing ultrafast ππ*/* internal conversion in organic chromophores via K-edge resonant absorption. Nat. Commun. 8, 29 (2017).

  17. 17.

    Stolow, A. & Underwood, J.G. Time-resolved photoelectron spectroscopy of nonadiabatic dynamics in polyatomic molecules. Adv. Chem. Phys. 139, 497–587 (2008).

  18. 18.

    Herbst, J., Heyne, K. & Diller, R. Femtosecond infrared spectroscopy of bacteriorhodopsin chromophore isomerization. Science 297, 822–825 (2002).

  19. 19.

    Ihee, H. et al. Direct imaging of transient molecular structures with ultrafast diffraction. Science 291, 458–462 (2001).

  20. 20.

    Srinivasan, R., Lobastov, V. A., Ruan, C.-Y. & Zewail, A. H. Ultrafast electron diffraction (UED). Helv. Chim. Acta 86, 1761–1799 (2003).

  21. 21.

    Minitti, M. P. et al. Imaging molecular motion: femtosecond X-ray scattering of an electrocyclic chemical reaction. Phys. Rev. Lett. 114, 255501 (2015).

  22. 22.

    Dudek, R. C. & Weber, P. M. Ultrafast diffraction imaging of the electrocyclic ring-opening reaction of 1,3-cyclohexadiene. J. Phys. Chem. A 105, 4167–4171 (2001).

  23. 23.

    Küpper, J. et al. X-ray diffraction from isolated and strongly aligned gas-phase molecules with a free-electron laser. Phys. Rev. Lett. 112, 083002 (2014).

  24. 24.

    Jean-Ruel, H. et al. Ring-closing reaction in diarylethene captured by femtosecond electron crystallography. J. Phys. Chem. B 117, 15894–15902 (2013).

  25. 25.

    Ischenko, A. A., Weber, P. M. & Miller, R. J. D. Capturing chemistry in action with electrons: realization of atomically resolved reaction dynamics. Chem. Rev. 117, 11066–11124 (2017).

  26. 26.

    Gao, M. et al. Mapping molecular motions leading to charge delocalization with ultrabright electrons. Nature 496, 343–346 (2013).

  27. 27.

    Zimmerman, H. E. & Nesterov, E. E. Development of experimental and theoretical crystal lattice organic photochemistry: the quantitative cavity. Mechanistic and exploratory organic photochemistry Acc. Chem. Res. 35, 77–85 (2002).

  28. 28.

    Zimmerman, H. E. & Zuraw, M. J. Photochemistry in a box. Photochemical reactions of molecules entrapped in crystal lattices: mechanistic and exploratory organic photochemistry. J. Am. Chem. Soc. 111, 7974–7989 (1989).

  29. 29.

    Yang, J. et al. Diffractive imaging of a rotational wavepacket in nitrogen molecules with femtosecond megaelectronvolt electron pulses. Nat. Commun. 7, 11232 (2016).

  30. 30.

    Yang, J. et al. Diffractive imaging of coherent nuclear motion in isolated molecules. Phys. Rev. Lett. 117, 153002 (2016).

  31. 31.

    Yang, J. et al. Imaging CF3I conical intersection and photodissociation dynamics with ultrafast electron diffraction. Science 361, 64–67 (2018).

  32. 32.

    Kirrander, A. & Weber, P. M. Fundamental limits on spatial resolution in ultrafast X-ray diffraction. Appl. Sci. 7, 534 (2017).

  33. 33.

    Ben-Nun, M., Quenneville, J. & Martínez, T. J. Ab Initio multiple spawning: photochemistry from first principles quantum molecular dynamics. J. Phys. Chem. A 104, 5161–5175 (2000).

  34. 34.

    Snyder, J. W., Parrish, R. M. & Martínez, T. J. α-CASSCF: an efficient, empirical correction for SA-CASSCF to closely approximate MS-CASPT2 potential energy surfaces. J. Phys. Chem. Lett. 8, 2432–2437 (2017).

  35. 35.

    Kosma, K., Trushin, S. A., Fuss, W. & Schmid, W. E. Cyclohexadiene ring opening observed with 13 fs resolution: coherent oscillations confirm the reaction path. Phys. Chem. Chem. Phys. 11, 172–181 (2009).

  36. 36.

    Kuthirummal, N., Rudakov, F. M., Evans, C. L. & Weber, P. M. Spectroscopy and femtosecond dynamics of the ring opening reaction of 1,3-cyclohexadiene. J. Chem. Phys. 125, 133307 (2006).

  37. 37.

    Harris, D. A., Orozco, M. B. & Sension, R. J. Solvent dependent conformational relaxation of cis-1,3,5-hexatriene. J. Phys. Chem. A 110, 9325–9333 (2006).

  38. 38.

    Weathersby, S. P. et al. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory. Rev. Sci. Instrum. 86, 073702 (2015).

  39. 39.

    Hohenstein, E. G., Luehr, N., Ufimtsev, I. S. & Martínez, T. J. An atomic orbital-based formulation of the complete active space self-consistent field method on graphical processing units. J. Chem. Phys. 142, 224103 (2015).

  40. 40.

    Snyder, J. W., Hohenstein, E. G., Luehr, N. & Martínez, T. J. An atomic orbital-based formulation of analytical gradients and nonadiabatic coupling vector elements for the state-averaged complete active space self-consistent field method on graphical processing units. J. Chem. Phys. 143, 154107 (2015).

  41. 41.

    Snyder, J. W., Fales, B. S., Hohenstein, E. G., Levine, B. G. & Martínez, T. J. A direct-compatible formulation of the coupled perturbed complete active space self-consistent field equations on graphical processing units. J. Chem. Phys. 146, 174113 (2017).

  42. 42.

    Snyder, J. W., Curchod, B. F. E. & Martínez, T. J. GPU-accelerated state-averaged complete active space self-consistent field interfaced with ab initio multiple spawning unravels the photodynamics of provitamin D3. J. Phys. Chem. Lett. 7, 2444–2449 (2016).

  43. 43.

    Roos, B. O. The complete active space self-consistent field method and its applications in electronic structure calculations. Adv. Chem. Phys. 69, 399–445 (1987).

  44. 44.

    Frutos, L., Andruniow, T., Santoro, F., Ferre, N. & Olivucci, M. Tracking the excited-state time evolution of the visual pigment with multiconfigurational quantum chemistry. Proc. Natl Acad. Sci. USA 104, 7764 (2007).

  45. 45.

    Hehre, W. J., Ditchfield, R. & Pople, J. A. Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 56, 2257–2261 (1972).

  46. 46.

    Ufimtsev, I. S. & Martínez, T. J. Quantum chemistry on graphical processing units. 1. Strategies for two-electron integral evaluation. J. Chem. Theory Comput. 4, 222–231 (2008).

  47. 47.

    Ufimtsev, I. S. & Martinez, T. J. Quantum chemistry on graphical processing units. 2. Direct self-consistent-field implementation. J. Chem. Theory Comput. 5, 1004–1015 (2009).

  48. 48.

    Ufimtsev, I. S. & Martinez, T. J. Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics. J. Chem. Theory Comput. 5, 2619–2628 (2009).

  49. 49.

    Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 33, 8822–8824 (1986).

  50. 50.

    Shao, J. & Tu, D. The Jackknife and Bootstrap (Springer-Verlag, Berlin, 1995).

Download references


This work was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. The experimental part of this research was performed at the SLAC MeV UED facility, which is supported in part by the DOE BES SUF Division Accelerator & Detector R&D program, the Linac Coherent Light Source (LCLS) Facility, and SLAC under contract nos. DE-AC02-05-CH11231 and DE-AC02-76SF00515. M.G. is funded via a Lichtenberg Professorship of the Volkswagen Foundation. D.M.S. is grateful to the NSF for a graduate fellowship. J.P.F.N. acknowledges the support of the Wild Overseas Scholars Fund of the Department of Chemistry, University of York. K.W. and M.C. are supported by the US Department of Energy Office of Science, Basic Energy Sciences under award no. DE-SC0014170. P.M.W. is supported by the US Department of Energy, Office of Science, Basic Energy Sciences, under award no. DE-SC0017995. A.K. is supported by the Carnegie Trust for the Universities of Scotland (grant ref. CRG050414) and an RSE/Scottish Government Sabbatical Research Grant (ref. 58507).

Author information


  1. Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA

    • T. J. A. Wolf
    • , D. M. Sanchez
    • , J. Yang
    • , R. M. Parrish
    • , J. P. Cryan
    • , M. Gühr
    • , K. Hegazy
    •  & T. J. Martínez
  2. Department of Chemistry, Stanford University, Stanford, CA, USA

    • D. M. Sanchez
    • , R. M. Parrish
    •  & T. J. Martínez
  3. SLAC National Accelerator Laboratory, Menlo Park, CA, USA

    • J. Yang
    • , R. Coffee
    • , R. K. Li
    • , X. Shen
    • , T. Vecchione
    • , S. P. Weathersby
    • , Q. Zheng
    • , X. J. Wang
    •  & M. P. Minitti
  4. Department of Chemistry, University of York, York, UK

    • J. P. F. Nunes
  5. Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, USA

    • J. P. F. Nunes
    • , M. Centurion
    •  & K. Wilkin
  6. Institut für Physik und Astronomie, Universität Potsdam, Potsdam, Germany

    • M. Gühr
  7. Department of Physics, Stanford University, Stanford, CA, USA

    • K. Hegazy
  8. EaStCHEM, School of Chemistry, University of Edinburgh, Edinburgh, UK

    • A. Kirrander
  9. Department of Chemistry, Brown University, Providence, RI, USA

    • J. Ruddock
    • , P. M. Weber
    •  & H. Yong


  1. Search for T. J. A. Wolf in:

  2. Search for D. M. Sanchez in:

  3. Search for J. Yang in:

  4. Search for R. M. Parrish in:

  5. Search for J. P. F. Nunes in:

  6. Search for M. Centurion in:

  7. Search for R. Coffee in:

  8. Search for J. P. Cryan in:

  9. Search for M. Gühr in:

  10. Search for K. Hegazy in:

  11. Search for A. Kirrander in:

  12. Search for R. K. Li in:

  13. Search for J. Ruddock in:

  14. Search for X. Shen in:

  15. Search for T. Vecchione in:

  16. Search for S. P. Weathersby in:

  17. Search for P. M. Weber in:

  18. Search for K. Wilkin in:

  19. Search for H. Yong in:

  20. Search for Q. Zheng in:

  21. Search for X. J. Wang in:

  22. Search for M. P. Minitti in:

  23. Search for T. J. Martínez in:


T.J.A.W., J.Y., J.P.F.N., M.C., R.C., J.P.C., M.G., K.H., R.K.L., X.S., T.V., S.P.W., K.W., Q.Z, X.J.W. and M.P.M. prepared and conducted the experiment at the SLAC ultrafast electron diffraction facility. D.M.S., R.M.P. and T.J.M. performed the ab-initio simulations. T.J.A.W. analysed the experimental data. T.J.A.W., D.M.S., J.Y., R.M.P., M.C., M.G., A.K., J.R., P.M.W., H.Y., X.W., M.P.M. and T.J.M. interpreted the results. T.J.A.W., D.M.S., R.M.P. and T.J.M. wrote the manuscript. All the authors discussed the science of the paper.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to T. J. A. Wolf or X. J. Wang or M. P. Minitti or T. J. Martínez.

Supplementary information

  1. Supplementary Information

    Supplementary Discussion, Supplementary Table, Supplementary Figures 1–18, Detailed description of the Supplementary Movies.

  2. Supplementary Movie 1

    1,3,5-hexatriene formation through the open-ring conical intersection

  3. Supplementary Movie 2

    1,3-cyclohexadiene formation through the open-ring conical intersection

  4. Supplementary Movie 3

    1,3-cyclohexadiene formation through the closed-ring conical intersection

About this article

Publication history