Reversing conventional site-selectivity in C(sp3)–H bond activation


One of the core barriers to developing C–H activation reactions is the ability to distinguish between multiple C–H bonds that are nearly identical in terms of electronic properties and bond strengths. Through recognition of distance and molecular geometry, remote C(sp2)–H bonds have been selectively activated in the presence of proximate ones. Yet achieving such unconventional site selectivity with C(sp3)–H bonds remains a paramount challenge. Here we report a combination of a simple pyruvic acid-derived directing group and a 2-pyridone ligand that enables the preferential activation of the distal γ-C(sp3)–H bond over the proximate β-C(sp3)–H bonds for a wide range of alcohol-derived substrates. A competition experiment between the five- and six-membered cyclopalladation step, as well as kinetic experiments, demonstrate the feasibility of using geometric strain to reverse the conventional site selectivity in C(sp3)–H activation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Reversing the site-selectivity for C(sp3)–H activation of aliphatic alcohols.
Fig. 2: Mechanistic study and removal of directing group.

Data availability

The data supporting the findings of this study are available in the article and its Supplementary Information. Metrical parameters for the structure of 7 (see Supplementary Information) are available free of charge from the Cambridge Crystallographic Data Centre ( under reference no. CCDC-1872396.


  1. 1.

    Gutekunst, W. R. & Baran, P. S. C–H functionalization logic in total synthesis. Chem. Soc. Rev. 40, 1976–1991 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    McMurray, L., O’Hara, F. & Gaunt, M. J. Recent developments in natural product synthesis using metal-catalysed C–H bond functionalisation. Chem. Soc. Rev. 40, 1885–1898 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    Leow, D., Li, G., Mei, T.-S. & Yu, J.-Q. Activation of remote meta-C–H bond assisted by an end-on template. Nature 486, 518–522 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    Zhang, Z., Tanaka, K. & Yu, J.-Q. Remote site-selective C–H activation directed by a catalytic bifunctional template. Nature 543, 538–542 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    Ackermann, L. Carboxylate-assisted transition-metal-catalyzed C–H bond functionalizations: mechanism and scope. Chem. Rev. 111, 1315–1345 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    Daugulis, O., Roane, J. & Tran, L. D. Bidentate, monoanionic auxiliary-directed functionalization of carbon–hydrogen bonds. Acc. Chem. Res. 48, 1053–1064 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Gensch, T., Hopkinson, M. N., Glorius, F. & Wencel-Delord, J. Mild metal-catalyzed C–H activation: examples and concepts. Chem. Soc. Rev. 45, 2900–2936 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Baudoin, O. Ring construction by palladium(0)-catalyzed C(sp3)-H activation. Acc. Chem. Res. 50, 1114–1123 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    Newton, C. G., Wang, S.-G., Oliveira, C. C. & Cramer, N. Catalytic enantioselective transformations involving C–H bond cleavage by transition-metal complexes. Chem. Rev. 117, 8908–8976 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    He, J., Wasa, M., Chan, K. S. L., Shao, Q. & Yu, J.-Q. Palladium-catalyzed transformations of alkyl C–H bonds. Chem. Rev. 117, 8754–8786 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    Ano, Y., Tobisu, M. & Chatani, N. Palladium-catalyzed direct ethynylation of C(sp3)–H bonds in aliphatic carboxylic acid derivatives. J. Am. Chem. Soc. 133, 12984–12986 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    Cheney, A. J. & Shaw, B. L. Transition metal–carbon bonds. Part XXXI. Internal metallations of palladium(II)-t-butyl-di-o-tolylphosphine and di-t-butyl-o-tolylphosphine complexes. J. Chem. Soc. Dalton Trans. 0, 860–865 (1972).

    CAS  Article  Google Scholar 

  14. 14.

    Constable, A. G., Mcdonald, W. S., Sawkins, L. C. & Shaw, B. L. Palladation of dimethylhydrazones, oximes, and oxime O-allyl ethers: crystal structure of [Pd3(ON=CiPrPh)6]. J. Chem. Soc. Chem. Commun. 1061-1062 (1978).

  15. 15.

    Hiraki, K., Fuchtta, Y. & Matsumoto, Y. Doubly-chelated cyclopalladated complexes of 1,3-bis(2-pyridyl)propane. Chem. Lett. 13, 1947–1948 (1984).

    Article  Google Scholar 

  16. 16.

    Balavoine, G. & Clinet, J. C. Cyclopalladated 2-t-butyl-4,4-dimethyl-2-oxazoline: its preparation and use in the functionalisation of a non-activated carbon-hydrogen bond. J. Organomet. Chem. 390, c84–c88 (1990).

    CAS  Article  Google Scholar 

  17. 17.

    Fuchita, Y., Hiraki, K. & Uchiyama, T. Metallation of aliphatic carbon atoms. Part 1. Synthesis and characterization of the cyclopalladated complexes of 2-neopentylpyridine. J. Chem. Soc. Dalton Trans. 897-899 (1983).

  18. 18.

    Nadres, E. T. & Daugulis, O. Heterocycle synthesis via direct C–H/N–H coupling. J. Am. Chem. Soc. 134, 7–10 (2012).

    CAS  Article  Google Scholar 

  19. 19.

    Reddy, B. V. S., Reddy, L. R. & Corey, E. J. Novel acetoxylation and C−C coupling reactions at unactivated positions in α-amino acid derivatives. Org. Lett. 8, 3391–3394 (2006).

    CAS  Article  Google Scholar 

  20. 20.

    Li, S., Chen, G., Feng, C.-G., Gong, W. & Yu, J.-Q. Ligand-enabled gamma-C–H olefination and carbonylation: construction of beta-quaternary carbon centers. J. Am. Chem. Soc. 136, 5267–5270 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    Zhu, R.-Y., Li, Z.-Q., Park, H. S., Senanayake, C. H. & Yu, J.-Q. Ligand-enabled gamma-C(sp3)−H activation of ketones. J. Am. Chem. Soc. 140, 3564–3568 (2018).

    CAS  Article  Google Scholar 

  22. 22.

    Xu, J.-W., Zhang, Z.-Z., Rao, W.-H. & Shi, B.-F. Site-selective alkenylation of δ-C(sp3)−H bonds with alkynes via a six-membered palladacycle. J. Am. Chem. Soc. 138, 10750–10753 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Simmons, E. M. & Hartwig, J. F. Catalytic functionalization of unactivated primary C–H bonds directed by an alcohol. Nature 483, 70–73 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    Li, B., Driess, M. & Hartwig, J. F. Iridium-catalyzed regioselective silylation of secondary alkyl C–H bonds for the synthesis of 1,3-diols. J. Am. Chem. Soc. 136, 6586–6589 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    Lu, Y., Wang, D.-H., Engle, K. M. & Yu, J.-Q. Pd(II)-catalyzed hydroxyl-directed C–H olefination enabled by mono-protected amino acid ligands. J. Am. Chem. Soc. 132, 5916–5921 (2010).

    CAS  Article  Google Scholar 

  26. 26.

    Wang, X., Lu, Y., Dai, H.-X. & Yu, J.-Q. Pd(II)-catalyzed hydroxyl-directed C–H activation/C-O cyclization: expedient construction of dihydrobenzofurans. J. Am. Chem. Soc. 132, 12203–12205 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    Ren, Z., Mo, F. & Dong, G. Catalytic functionalization of unactivated sp3 C–H bonds via exo-directing groups: synthesis of chemically differentiated 1,2-diols. J. Am. Chem. Soc. 134, 16991–16994 (2012).

    CAS  Article  Google Scholar 

  28. 28.

    Xu, Y., Yan, G., Ren, Z. & Dong, G. Diverse sp 3 C−H functionalization through alcohol β-sulfonyloxylation. Nat. Chem. 7, 829–834 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    Anslyn, E. V. & Dougherty, D. A. Modern Physical Organic Chemistry (University Science Books, Sausalito, 2006).

  30. 30.

    Falbe, J., Bahrmann, H., Lipps, W., Mayer, D. & Frey, G. D. Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, Hoboken, 2000).

  31. 31.

    Wang, P. et al. Ligand-accelerated non-directed C–H functionalization of arenes. Nature 551, 489–494 (2017).

    CAS  Article  Google Scholar 

Download references


We gratefully acknowledge Scripps Research, the NIH (National Institute of General Medical Sciences grant no. 2R01GM084019) for their financial support.

Author information




J.-Q.Y. and G.X. conceived the concept. G.X. developed the distal C(sp3)–H arylation for aliphatic alcohols. G.X. and J.W. synthesized the alcohol substrates and investigated the scope. G.X., Z.L. and L.L. conducted the experiments for aryl iodide scope. G.X. and P.V. conducted the mechanistic studies. J.-Q.Y. supervised the project.

Corresponding author

Correspondence to Jin-Quan Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary experimental details and compound characterization data, kinetic experiments, tables for ligands and directing-group screening.

Crystallographic data

CIF for palladacycle 7; CCDC reference: 1872396

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xia, G., Weng, J., Liu, L. et al. Reversing conventional site-selectivity in C(sp3)–H bond activation. Nat. Chem. 11, 571–577 (2019).

Download citation


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing