Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reversing conventional site-selectivity in C(sp3)–H bond activation


One of the core barriers to developing C–H activation reactions is the ability to distinguish between multiple C–H bonds that are nearly identical in terms of electronic properties and bond strengths. Through recognition of distance and molecular geometry, remote C(sp2)–H bonds have been selectively activated in the presence of proximate ones. Yet achieving such unconventional site selectivity with C(sp3)–H bonds remains a paramount challenge. Here we report a combination of a simple pyruvic acid-derived directing group and a 2-pyridone ligand that enables the preferential activation of the distal γ-C(sp3)–H bond over the proximate β-C(sp3)–H bonds for a wide range of alcohol-derived substrates. A competition experiment between the five- and six-membered cyclopalladation step, as well as kinetic experiments, demonstrate the feasibility of using geometric strain to reverse the conventional site selectivity in C(sp3)–H activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reversing the site-selectivity for C(sp3)–H activation of aliphatic alcohols.
Fig. 2: Mechanistic study and removal of directing group.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available in the article and its Supplementary Information. Metrical parameters for the structure of 7 (see Supplementary Information) are available free of charge from the Cambridge Crystallographic Data Centre ( under reference no. CCDC-1872396.


  1. Gutekunst, W. R. & Baran, P. S. C–H functionalization logic in total synthesis. Chem. Soc. Rev. 40, 1976–1991 (2011).

    Article  CAS  Google Scholar 

  2. McMurray, L., O’Hara, F. & Gaunt, M. J. Recent developments in natural product synthesis using metal-catalysed C–H bond functionalisation. Chem. Soc. Rev. 40, 1885–1898 (2011).

    Article  CAS  Google Scholar 

  3. Leow, D., Li, G., Mei, T.-S. & Yu, J.-Q. Activation of remote meta-C–H bond assisted by an end-on template. Nature 486, 518–522 (2012).

    Article  CAS  Google Scholar 

  4. Zhang, Z., Tanaka, K. & Yu, J.-Q. Remote site-selective C–H activation directed by a catalytic bifunctional template. Nature 543, 538–542 (2017).

    Article  CAS  Google Scholar 

  5. Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010).

    Article  CAS  Google Scholar 

  6. Ackermann, L. Carboxylate-assisted transition-metal-catalyzed C–H bond functionalizations: mechanism and scope. Chem. Rev. 111, 1315–1345 (2011).

    Article  CAS  Google Scholar 

  7. Daugulis, O., Roane, J. & Tran, L. D. Bidentate, monoanionic auxiliary-directed functionalization of carbon–hydrogen bonds. Acc. Chem. Res. 48, 1053–1064 (2015).

    Article  CAS  Google Scholar 

  8. Gensch, T., Hopkinson, M. N., Glorius, F. & Wencel-Delord, J. Mild metal-catalyzed C–H activation: examples and concepts. Chem. Soc. Rev. 45, 2900–2936 (2016).

    Article  CAS  Google Scholar 

  9. Baudoin, O. Ring construction by palladium(0)-catalyzed C(sp3)-H activation. Acc. Chem. Res. 50, 1114–1123 (2017).

    Article  CAS  Google Scholar 

  10. Newton, C. G., Wang, S.-G., Oliveira, C. C. & Cramer, N. Catalytic enantioselective transformations involving C–H bond cleavage by transition-metal complexes. Chem. Rev. 117, 8908–8976 (2017).

    Article  CAS  Google Scholar 

  11. He, J., Wasa, M., Chan, K. S. L., Shao, Q. & Yu, J.-Q. Palladium-catalyzed transformations of alkyl C–H bonds. Chem. Rev. 117, 8754–8786 (2017).

    Article  CAS  Google Scholar 

  12. Ano, Y., Tobisu, M. & Chatani, N. Palladium-catalyzed direct ethynylation of C(sp3)–H bonds in aliphatic carboxylic acid derivatives. J. Am. Chem. Soc. 133, 12984–12986 (2011).

    Article  CAS  Google Scholar 

  13. Cheney, A. J. & Shaw, B. L. Transition metal–carbon bonds. Part XXXI. Internal metallations of palladium(II)-t-butyl-di-o-tolylphosphine and di-t-butyl-o-tolylphosphine complexes. J. Chem. Soc. Dalton Trans. 0, 860–865 (1972).

    Article  CAS  Google Scholar 

  14. Constable, A. G., Mcdonald, W. S., Sawkins, L. C. & Shaw, B. L. Palladation of dimethylhydrazones, oximes, and oxime O-allyl ethers: crystal structure of [Pd3(ON=CiPrPh)6]. J. Chem. Soc. Chem. Commun. 1061-1062 (1978).

  15. Hiraki, K., Fuchtta, Y. & Matsumoto, Y. Doubly-chelated cyclopalladated complexes of 1,3-bis(2-pyridyl)propane. Chem. Lett. 13, 1947–1948 (1984).

    Article  Google Scholar 

  16. Balavoine, G. & Clinet, J. C. Cyclopalladated 2-t-butyl-4,4-dimethyl-2-oxazoline: its preparation and use in the functionalisation of a non-activated carbon-hydrogen bond. J. Organomet. Chem. 390, c84–c88 (1990).

    Article  CAS  Google Scholar 

  17. Fuchita, Y., Hiraki, K. & Uchiyama, T. Metallation of aliphatic carbon atoms. Part 1. Synthesis and characterization of the cyclopalladated complexes of 2-neopentylpyridine. J. Chem. Soc. Dalton Trans. 897-899 (1983).

  18. Nadres, E. T. & Daugulis, O. Heterocycle synthesis via direct C–H/N–H coupling. J. Am. Chem. Soc. 134, 7–10 (2012).

    Article  CAS  Google Scholar 

  19. Reddy, B. V. S., Reddy, L. R. & Corey, E. J. Novel acetoxylation and C−C coupling reactions at unactivated positions in α-amino acid derivatives. Org. Lett. 8, 3391–3394 (2006).

    Article  CAS  Google Scholar 

  20. Li, S., Chen, G., Feng, C.-G., Gong, W. & Yu, J.-Q. Ligand-enabled gamma-C–H olefination and carbonylation: construction of beta-quaternary carbon centers. J. Am. Chem. Soc. 136, 5267–5270 (2014).

    Article  CAS  Google Scholar 

  21. Zhu, R.-Y., Li, Z.-Q., Park, H. S., Senanayake, C. H. & Yu, J.-Q. Ligand-enabled gamma-C(sp3)−H activation of ketones. J. Am. Chem. Soc. 140, 3564–3568 (2018).

    Article  CAS  Google Scholar 

  22. Xu, J.-W., Zhang, Z.-Z., Rao, W.-H. & Shi, B.-F. Site-selective alkenylation of δ-C(sp3)−H bonds with alkynes via a six-membered palladacycle. J. Am. Chem. Soc. 138, 10750–10753 (2016).

    Article  CAS  Google Scholar 

  23. Simmons, E. M. & Hartwig, J. F. Catalytic functionalization of unactivated primary C–H bonds directed by an alcohol. Nature 483, 70–73 (2012).

    Article  CAS  Google Scholar 

  24. Li, B., Driess, M. & Hartwig, J. F. Iridium-catalyzed regioselective silylation of secondary alkyl C–H bonds for the synthesis of 1,3-diols. J. Am. Chem. Soc. 136, 6586–6589 (2014).

    Article  CAS  Google Scholar 

  25. Lu, Y., Wang, D.-H., Engle, K. M. & Yu, J.-Q. Pd(II)-catalyzed hydroxyl-directed C–H olefination enabled by mono-protected amino acid ligands. J. Am. Chem. Soc. 132, 5916–5921 (2010).

    Article  CAS  Google Scholar 

  26. Wang, X., Lu, Y., Dai, H.-X. & Yu, J.-Q. Pd(II)-catalyzed hydroxyl-directed C–H activation/C-O cyclization: expedient construction of dihydrobenzofurans. J. Am. Chem. Soc. 132, 12203–12205 (2010).

    Article  CAS  Google Scholar 

  27. Ren, Z., Mo, F. & Dong, G. Catalytic functionalization of unactivated sp3 C–H bonds via exo-directing groups: synthesis of chemically differentiated 1,2-diols. J. Am. Chem. Soc. 134, 16991–16994 (2012).

    Article  CAS  Google Scholar 

  28. Xu, Y., Yan, G., Ren, Z. & Dong, G. Diverse sp 3 C−H functionalization through alcohol β-sulfonyloxylation. Nat. Chem. 7, 829–834 (2015).

    Article  CAS  Google Scholar 

  29. Anslyn, E. V. & Dougherty, D. A. Modern Physical Organic Chemistry (University Science Books, Sausalito, 2006).

  30. Falbe, J., Bahrmann, H., Lipps, W., Mayer, D. & Frey, G. D. Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, Hoboken, 2000).

  31. Wang, P. et al. Ligand-accelerated non-directed C–H functionalization of arenes. Nature 551, 489–494 (2017).

    Article  CAS  Google Scholar 

Download references


We gratefully acknowledge Scripps Research, the NIH (National Institute of General Medical Sciences grant no. 2R01GM084019) for their financial support.

Author information

Authors and Affiliations



J.-Q.Y. and G.X. conceived the concept. G.X. developed the distal C(sp3)–H arylation for aliphatic alcohols. G.X. and J.W. synthesized the alcohol substrates and investigated the scope. G.X., Z.L. and L.L. conducted the experiments for aryl iodide scope. G.X. and P.V. conducted the mechanistic studies. J.-Q.Y. supervised the project.

Corresponding author

Correspondence to Jin-Quan Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary experimental details and compound characterization data, kinetic experiments, tables for ligands and directing-group screening.

Crystallographic data

CIF for palladacycle 7; CCDC reference: 1872396

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, G., Weng, J., Liu, L. et al. Reversing conventional site-selectivity in C(sp3)–H bond activation. Nat. Chem. 11, 571–577 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing