Shear-induced assembly of a transient yet highly stretchable hydrogel based on pseudopolyrotaxanes

Abstract

Dissipative self-assembly is common in biological systems, where it serves to maintain a far-from-equilibrium functional state through fuel consumption. Synthetic dissipative systems have been prepared that can mimic some of the properties of biological systems, but they often show poor mechanical performance. Here, we report a shear-induced transient hydrogel that is highly stretchable. The system is constructed by adding Cu(ii) into the aqueous solution of a pseudopolyrotaxane, which is itself formed by threading molecular tubes on polyethylene glycol chains. Vigorous shaking transforms the solution into a gel, which gradually relaxes back to the sol state over time. This cycle can be repeated at least five times. A mechanism is proposed that relies on a shear-induced transition from intrachain to interchain coordination and subsequent thermal relaxation. The far-from-equilibrium hydrogel is highly stretchable, which is probably due to ‘frictional’ sliding of the molecular tubes on the polyethylene glycol chains. On shaking, the hydrogel undergoes fast self-healing.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Chemical structures and overview of the gelation process.
Fig. 2: Shear-induced gelation.
Fig. 3: Binding affinity and driving force between OEGs and 1a.
Fig. 4: Mechanism and evidence for shear-induced gelation and thermal relaxation.
Fig. 5: Properties and mechanism of the transient hydrogel.

Data availability

Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre under deposition no. CCDC 1563693 (7@2b). Copies of the data can be obtained free of charge from www.ccdc.cam.ac.uk/structures/. All other data supporting the findings of this study are available within the Article and its Supplementary Information and/or from the corresponding author upon reasonable request.

References

  1. 1.

    Philp, D. & Stoddart, J. F. Self-assembly in natural and unnatural systems. Angew. Chem. Int. Ed. 35, 1154–1196 (1996).

    Article  Google Scholar 

  2. 2.

    Steed, J. W. & Gale, P. A. (eds) in Supramolecular Chemistry: from Molecules to Nanomaterials Vol. 5, 1965 (Wiley, Hoboken, 2012).

  3. 3.

    Fialkowski, M. et al. Principles and implementations of dissipative (dynamic) self-assembly. J. Phys. Chem. B 110, 2482–2496 (2006).

    CAS  Article  Google Scholar 

  4. 4.

    Mattia, E. & Otto, S. Supramolecular systems chemistry. Nat. Nanotechnol. 10, 111–119 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    van Rossum, S. A., Tena-Solsona, M., van Esch, J. H., Eelkema, R. & Boekhoven, J. Dissipative out-of-equilibrium assembly of man-made supramolecular materials. Chem. Soc. Rev. 46, 5519–5535 (2017).

    Article  Google Scholar 

  6. 6.

    Grzybowski, B. A. & Huck, W. T. The nanotechnology of life-inspired systems. Nat. Nanotechnol. 11, 585–592 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    Soejima, T., Morikawa, M. A. & Kimizuka, N. Holey gold nanowires formed by photoconversion of dissipative nanostructures emerged at the aqueous–organic interface. Small 5, 2043–2047 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    Eelkema, R. et al. Molecular machines: nanomotor rotates microscale objects. Nature 440, 163–163 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    Klajn, R., Wesson, P. J., Bishop, K. J. M. & Grzybowski, B. A. Writing self-erasing images using metastable nanoparticle ‘inks’. Angew. Chem. Int. Ed. 48, 7035–7039 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    Ragazzon, G., Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. Nat. Nanotechnol. 10, 70–75 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Kundu, P. K. et al. Light-controlled self-assembly of non-photoresponsive nanoparticles. Nat. Chem. 7, 646–652 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    Grzybowski, B. A., Stone, H. A. & Whitesides, G. M. Dynamic self-assembly of magnetized, millimetre-sized objects rotating at a liquid–air interface. Nature 405, 1033–1036 (2000).

    CAS  Article  Google Scholar 

  13. 13.

    Krabbenborg, S. O., Veerbeek, J. & Huskens, J. Spatially controlled out-of-equilibrium host–guest system under electrochemical control. Chem. Eur. J. 21, 9638–9644 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Nakanishi, H. et al. Dynamic internal gradients control and direct electric currents within nanostructured materials. Nat. Nanotechnol. 6, 740–746 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    Boekhoven, J., Hendriksen, W. E., Koper, G. J. M., Eelkema, R. & van Esch, J. H. Transient assembly of active materials fueled by a chemical reaction. Science 349, 1075–1079 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    Pappas, C. G., Sasselli, I. R. & Ulijn, R. V. Biocatalytic pathway selection in transient tripeptide nanostructures. Angew. Chem. Int. Ed. 54, 8119–8123 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Maiti, S., Fortunati, I., Ferrante, C., Scrimin, P. & Prins, L. J. Dissipative self-assembly of vesicular nanoreactors. Nat. Chem. 8, 725–731 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    Wang, G. et al. The fabrication of a supra-amphiphile for dissipative self-assembly. Chem. Sci. 7, 1151–1155 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Kariyawasam, L. S. & Hartley, C. S. Dissipative assembly of aqueous carboxylic acid anhydrides fueled by carbodiimides. J. Am. Chem. Soc. 139, 11949–11955 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Dambenieks, A. K., Vu, P. H. Q. & Fyles, T. M. Dissipative assembly of a membrane transport system. Chem. Sci. 5, 3396–3403 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    Dhiman, S., Jain, A. & George, S. J. Transient helicity: fuel-driven temporal control over conformational switching in a supramolecular polymer. Angew. Chem. Int. Ed. 56, 1329–1333 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    Semenov, S. N. et al. Rational design of functional and tunable oscillating enzymatic networks. Nat. Chem. 7, 160–165 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Yashin, V. V. & Balazs, A. C. Pattern formation and shape changes in self-oscillating polymer gels. Science 314, 798–801 (2006).

    CAS  Article  Google Scholar 

  24. 24.

    Che, H., Buddingh, B. C. & van Hest, J. C. M. Self-regulated and temporal control of a ‘breathing’ microgel mediated by enzymatic reaction. Angew. Chem. Int. Ed. 56, 12581–12585 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Cheng, C. et al. An artificial molecular pump. Nat. Nanotechnol. 10, 547–553 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Wood, C. S., Browne, C., Wood, D. M. & Nitschke, J. R. Fuel-controlled reassembly of metal–organic architectures. ACS Cent. Sci. 1, 504–509 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    Erbas-Cakmak, S. et al. Rotary and linear molecular motors driven by pulses of a chemical fuel. Science 358, 340–343 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    Kumar, M. et al. Amino-acid-encoded biocatalytic self-assembly enables the formation of transient conducting nanostructures. Nat. Chem. 10, 696–703 (2018).

    CAS  Article  Google Scholar 

  29. 29.

    Brown, E. et al. Generality of shear thickening in dense suspensions. Nat. Mater. 9, 220–224 (2010).

    CAS  Article  Google Scholar 

  30. 30.

    Chen, H. et al. Blood-clotting-inspired reversible polymer-colloid composite assembly in flow. Nat. Commun. 4, 1333 (2013).

    Article  Google Scholar 

  31. 31.

    Zebrowski, J., Prasad, V., Zhang, W., Walker, L. M. & Weitz, D. A. Shake-gels: shear-induced gelation of laponite-PEO mixtures. Colloids Surf. A 213, 189–197 (2003).

    CAS  Article  Google Scholar 

  32. 32.

    Witten, T. A. Associating polymers and shear thickening. J. Phys. France 49, 1055–1063 (1988).

    CAS  Article  Google Scholar 

  33. 33.

    Winnik, M. A. & Yekta, A. Associative polymers in aqueous solution. Curr. Opin. Colloid Interface Sci. 2, 424–436 (1997).

    CAS  Article  Google Scholar 

  34. 34.

    Aubry, T. & Moan, M. Rheological behavior of a hydrophobically associating water soluble polymer. J. Rheol. 38, 1681–1692 (1994).

    CAS  Article  Google Scholar 

  35. 35.

    Huang, G.-B., Wang, S.-H., Ke, H., Yang, L.-P. & Jiang, W. Selective recognition of highly hydrophilic molecules in water by endo-functionalized molecular tubes. J. Am. Chem. Soc. 138, 14550–14553 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    Yao, H. et al. Molecular recognition of hydrophilic molecules in water by combining the hydrophobic effects with hydrogen bonding. J. Am. Chem. Soc. 140, 13466–13477 (2018).

    CAS  Article  Google Scholar 

  37. 37.

    Wang, L.-L. et al. Molecular recognition and chirality sensing of epoxides in water using endo-functionalized molecular tubes. J. Am. Chem. Soc. 139, 8436–8439 (2017).

    CAS  Article  Google Scholar 

  38. 38.

    Shriver, D. F. & Atkins, P. W. Inorganic Chemistry 4th edn, 227–236 (Oxford Univ. Press, 2001).

  39. 39.

    Naota, T. & Koori, H. Molecules that assemble by sound: an application to the instant gelation of stable organic fluids. J. Am. Chem. Soc. 127, 9324–9325 (2005).

    CAS  Article  Google Scholar 

  40. 40.

    Ramirez, A. L. B. et al. Mechanochemical strengthening of a synthetic polymer in response to typically destructive shear forces. Nat. Chem. 5, 757–761 (2013).

    CAS  Article  Google Scholar 

  41. 41.

    Harada, A., Li, J. & Kamachi, M. Preparation and properties of inclusion complexes of polyethylene glycol with α-cyclodextrin. Macromolecules 26, 5698–5703 (1993).

    CAS  Article  Google Scholar 

  42. 42.

    Biedermann, F., Nau, W. M. & Schneider, H. J. The hydrophobic effect revisited—-studies with supramolecular complexes imply high-energy water as a noncovalent driving force. Angew. Chem. Int. Ed. 53, 11158–11171 (2014).

    CAS  Article  Google Scholar 

  43. 43.

    Benson, S. W. Statistical factors in the correlation of rate constants and equilibrium constants. J. Am. Chem. Soc. 80, 5151–5154 (1958).

    CAS  Article  Google Scholar 

  44. 44.

    Fasting, C. et al. Multivalency as a chemical organization and action principle. Angew. Chem. Int. Ed. 51, 10472–10498 (2012).

    CAS  Article  Google Scholar 

  45. 45.

    Beyer, M. K. & Clausen-Schaumann, H. Mechanochemistry: the mechanical activation of covalent bonds. Chem. Rev. 105, 2921–2948 (2005).

    CAS  Article  Google Scholar 

  46. 46.

    Siegler, M. A., Hao, X., Parkin, S. & Brock, C. P. Five more phases of the structural family [M(H2O)2(15-crown-5)](NO3)2. Acta Crystallogr. B 64, 738–749 (2008).

    CAS  Article  Google Scholar 

  47. 47.

    Sun, J.-Y. et al. Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012).

    CAS  Article  Google Scholar 

  48. 48.

    Imran, A. B. et al. Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network. Nat. Commun. 5, 5124 (2014).

    Article  Google Scholar 

  49. 49.

    Okumura, Y. & Ito, K. The polyrotaxane gel: a topological gel by figure‐of‐eight cross‐links. Adv. Mater. 13, 485–487 (2001).

    CAS  Article  Google Scholar 

  50. 50.

    Zhang, Y. S. & Khademhosseini, A. Advances in engineering hydrogels. Science 356, eaaf3627 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (nos. 21772083 and 21822104), SZSTI (nos. JCYJ20170307105848463 and KQJSCX20170728162528382), the Shenzhen Nobel Prize Scientists Laboratory Project (C17213101) and the Open Project of the State Key Laboratory of Supramolecular Structure and Materials (sklssm201807, Jilin University). The authors thank SUSTech-MCPC for instrumental support and C.A. Schalley, Z.-T. Li, W. Lu and S. Craig for valuable suggestions and comments. This Article is dedicated to Y. Liu and J. Rebek.

Author information

Affiliations

Authors

Contributions

W.J. conceived and designed the experiments. H.K. performed all the experiments with the help of L.-P.Y. and H.Y. Z.C. optimized the synthesis of the molecular tubes. M.X. performed the DFT calculations. W.J. and H.K. analysed the data. W.J. wrote the manuscript and all authors commented on it.

Corresponding author

Correspondence to Wei Jiang.

Ethics declarations

Competing interests

W.J., H.K. and L.-P.Y. are listed as the inventors on a Chinese patent application from Southern University of Science and Technology (patent application no. CN201710569674.7). The patent, currently under substantive examination, comprises the following aspects of this study: binding of the PEGs with the endo-functionalized molecular tubes, the preparation of the hydrogels and the shear-thickening measurements.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Titration data, 1H and 13C NMR spectra, mass spectra, crystallographic data, computational details, and details of control experiments.

Crystallographic data

CIF for compound 7@2b; CCDC reference: 1563693

Crystallographic data

structure-factor file for compound 7@2b; CCDC reference: 1563693

Supplementary Video 1

Demonstration of shear-induced transition from a sol to a gel

Supplementary Video 2

Demonstration of the high elasticity of the shear-induced transient hydrogel.

Supplementary Video 3

Demonstration of the breakage of the merged hydrogel without shaking

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ke, H., Yang, L., Xie, M. et al. Shear-induced assembly of a transient yet highly stretchable hydrogel based on pseudopolyrotaxanes. Nat. Chem. 11, 470–477 (2019). https://doi.org/10.1038/s41557-019-0235-8

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing