Molecular spins for quantum computation

Abstract

Spins in solids or in molecules possess discrete energy levels, and the associated quantum states can be tuned and coherently manipulated by means of external electromagnetic fields. Spins therefore provide one of the simplest platforms to encode a quantum bit (qubit), the elementary unit of future quantum computers. Performing any useful computation demands much more than realizing a robust qubit—one also needs a large number of qubits and a reliable manner with which to integrate them into a complex circuitry that can store and process information and implement quantum algorithms. This ‘scalability’ is arguably one of the challenges for which a chemistry-based bottom-up approach is best-suited. Molecules, being much more versatile than atoms, and yet microscopic, are the quantum objects with the highest capacity to form non-trivial ordered states at the nanoscale and to be replicated in large numbers using chemical tools.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Molecular spins in quantum information technologies.
Fig. 2: Spin clock transitions.
Fig. 3: Manipulating multiple qubit states in a single molecule.
Fig. 4: Wiring up molecular spin qubits.

References

  1. 1.

    Christou, G., Gatteschi, D., Hendrickson, D. & Sessoli, R. Single-molecule magnets. MRS Bulletin 25, 66–71 (2000).

    CAS  Google Scholar 

  2. 2.

    Milios, C. J. et al. A record anisotropy barrier for a single-molecule magnet. J. Am. Chem. Soc. 129, 2754–2755 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Ishikawa, N., Sugita, M., Ishikawa, T., Koshihara, S.-Y. & Kaizu, Y. Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J. Am. Chem. Soc. 125, 8694–8695 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Aldamen, M. A., Clemente-Juan, J. M., Coronado, E. & Martí-Gastaldo, C. Gaita-Ariño, A. Mononuclear lanthanide single-molecule magnets based on polyoxometalates. J. Am. Chem. Soc. 130, 8874–8875 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    AlDamen, M. A. et al. Mononuclear lanthanide single molecule magnets based on the polyoxometalates [Ln(W5O18)2]9− and [Ln(β2-SiW11O39)2]13− [Ln(III) = Tb, Dy, Ho, Er, Tm, and Yb]. Inorg. Chem. 48, 3467–3479 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    McAdams, S. G., Ariciu, A.-M., Kostopoulos, A. K., Walsh, J. P. S. & Tuna, F. Molecular single-ion magnets based on lanthanides and actinides: design considerations and new advances in the context of quantum technologies. Coord. Chem. Rev. 346, 216–239 (2017).

    CAS  Google Scholar 

  7. 7.

    Escalera-Moreno, L., Baldoví, J. J., Gaita-Ariño, A. & Coronado, E. Spin states, vibrations and spin relaxation in molecular nanomagnets and spin qubits: a critical perspective. Chem. Sci. 9, 3265–3275 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Guo, F.-S. et al. A dysprosium metallocene single-molecule magnet functioning at the axial limit. Angew. Chem. Int. Ed. 56, 11445–11449 (2017).

    CAS  Google Scholar 

  9. 9.

    Goodwin, C. A. P., Ortu, F., Reta, D., Chilton, N. F. & Mills, D. P. Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature 548, 439–442 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Guo, F.-S. et al. Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science 362, 1400–1403 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Zurek, W. H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003).

    Google Scholar 

  12. 12.

    Schleich, W. P. Quantum physics: engineering decoherence. Nature 403, 256–257 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Takahashi, S. et al. Decoherence in crystals of quantum molecular magnets. Nature 476, 76–79 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1173 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Monroe, C. & Kim, J. Scaling the ion trap quantum processor. Science 339, 1164–1169 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Hanson, R., Dobrovitski, V. V., Feiguin, A. E., Gywat, O. & Awschalom, D. D. Coherent dynamics of a single spin interacting with an adjustable spin bath. Science 320, 352–355 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Steger, M. et al. Quantum information storage for over 180 s using donor spins in a 28Si “semiconductor vacuum”. Science 336, 1280–1283 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Stamp, P. C. E. & Gaita-Ariño, A. Spin-based quantum computers made by chemistry: hows and whys. J. Mater. Chem. 19, 1718–1730 (2008).

    Google Scholar 

  19. 19.

    Clemente-Juan, J. M., Coronado, E. & Gaita-Ariño, A. Magnetic polyoxometalates: from molecular magnetism to molecular spintronics and quantum computing. Chem. Soc. Rev. 41, 7464–7478 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Aromí, G., Aguilà, D., Gamez, P., Luis, F. & Roubeau, O. Design of magnetic coordination complexes for quantum computing. Chem. Soc. Rev. 41, 537–546 (2012).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Sessoli, R. Toward the quantum computer: magnetic molecules back in the race. ACS Cent. Sci. 1, 473–474 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Gaita-Ariño, A. et al. Coherence and organisation in lanthanoid complexes: from single ion magnets to spin qubits. Inorg. Chem. Front. 3, 568–577 (2016).

    Google Scholar 

  23. 23.

    Graham, M. J., Zadrozny, J. M., Fataftah, M. S. & Freedman, D. E. Forging solid-state qubit design principles in a molecular furnace. Chem. Mater. 29, 1885–1897 (2017).

    CAS  Google Scholar 

  24. 24.

    Jelezko, F., Gaebel, T., Popa, I., Gruber, A. & Wrachtrup, J. Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92, 076401 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    CAS  Google Scholar 

  26. 26.

    Scarabelli, D., Trusheim, M., Gaathon, O., Englund, D. & Wind, S. J. Nanoscale engineering of closely-spaced electronic spins in diamond. Nano Lett. 16, 4982–4990 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Pla, J. J. et al. A single-atom electron spin qubit in silicon. Nature 489, 541–545 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Pla, J. J. et al. High-fidelity readout and control of a nuclear spin qubit in silicon. Nature 496, 334–338 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Muhonen, J. T. Storing quantum information for 30 seconds in a nanoelectronic device. Nat. Nanotechnol. 9, 986–991 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Ardavan, A. et al. Will spin-relaxation times in molecular magnets permit quantum information processing?. Phys. Rev. Lett. 98, 057201 (2007).

    Google Scholar 

  31. 31.

    Wedge, C. J. et al. Chemical engineering of molecular qubits. Phys. Rev. Lett. 108, 107204 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Bertaina, S. et al. Quantum oscillations in a molecular magnet. Nature 453, 203–206 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Warner, M. et al. Potential for spin-based information processing in a thin-film molecular semiconductor. Nature 503, 504–508 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Bader, K. et al. Room temperature quantum coherence in a potential molecular qubit. Nat. Commun. 5, 5304 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Zadrozny, J. M., Niklas, J., Poluetkov, O. G. & Freedman, D. E. Millisecond coherence time in a tunable molecular electronic spin qubit. ACS Cent. Sci. 1, 488–492 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Atzori, M. et al. Room-temperature quantum coherence and Rabi oscillations in vanadyl phthalocyanine: toward multifunctional molecular spin qubits. J. Am. Chem. Soc. 138, 2154–2157 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Shiddiq, M. et al. Enhancing coherence in molecular spin qubits via atomic clock transitions. Nature 531, 348–351 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Martínez-Pérez, M. J. et al. Gd-based single-ion magnets with tunable magnetic anisotropy: molecular design of spin qubits. Phys. Rev. Lett. 108, 247213 (2012).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Jenkins, M. D. et al. Coherent manipulation of three-qubit states in a molecular single-ion magnet. Phys. Rev. B 95, 064423 (2017).

    Google Scholar 

  40. 40.

    Godfrin, C. et al. Operating quantum states in single magnetic molecules: implementation of Grover’s quantum algorithm. Phys. Rev. Lett. 119, 187702 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Morello, A., Stamp, P. C. E. & Tupitsyn, I. S. Pairwise decoherence in coupled spin qubit networks. Phys. Rev. Lett. 97, 207206 (2006).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Gómez, S. et al. Origin of slow magnetic relaxation in Kramers ions with nonuniaxial anisotropy. Nat. Commun. 5, 4300 (2014).

    Google Scholar 

  43. 43.

    Escalera-Moreno, L., Suaud, N., Gaita-Ariño, A. & Coronado, E. Determining key local vibrations in the relaxation of molecular spin qubits and single-molecule magnets. J. Phys. Chem. Lett. 8, 1695–1700 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Lunghi, A., Totti, F., Sessoli, R. & Sanvito, S. The role of anharmonic phonons in under-barrier spin relaxation of single molecule magnets. Nat. Commun. 8, 14620 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Bertaina, S. et al. Rare-earth solid-state qubits. Nat. Nanotechnol. 2, 39–42 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Baibekova, E. et al. Coherence times and Rabi oscillations in CaWO4:Cr5+ crystal. J. Magn. Res 209, 61–68 (2011).

    Google Scholar 

  47. 47.

    Fataftah, M. S., Zadrozny, J. M., Rogers, D. M. & Freedman, D. E. A mononuclear transition metal single-molecule magnet in a nuclear spin-free ligand environment. Inorg. Chem. 53, 10716–10721 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Cardona-Serra, S., Gaita-Ariño, A., Stamenova, M. & Sanvito, S. Theoretical evaluation of [VIV(α-C3S5)3]2– as nuclear-spin-sensitive single-molecule spin transistor. J. Phys. Chem. Lett. 8, 3056–3060 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Pedersen, K. S. et al. Toward molecular 4f single-ion magnet qubits. J. Am. Chem. Soc. 138, 5801–5804 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Baldoví, J. J. et al. Rational design of single-ion magnets and spin qubits based on mononuclear lanthanoid complexes. Inorg. Chem. 51, 12565–12574 (2012).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Zadrozny, J. M., Gallagher, A. T., Harris, T. D. & Freeman, D. E. A porous array of clock qubits. J. Am. Chem. Soc. 139, 7089–7094 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Hinkley, N. et al. An atomic clock with 10–18 instability. Science 341, 1215–1218 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Cardona-Serra, S. et al. Lanthanoid single-ion magnets based on polyoxometalates with a 5-fold symmetry: the series [LnP5W30O110]12− (Ln3+ = Tb, Dy, Ho, Er, Tm, and Yb). J. Am. Chem. Soc. 134, 14982–14990 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Barenco, A. et al. Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Lehmann, J. et al. Spin qubits with electrically gated polyoxometalate molecules. Nat. Nanotechnol. 2, 312–317 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Ferrando-Soria, J. et al. A modular design of molecular qubits to implement universal quantum gates. Nat.Commun. 7, 11377 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Salinas, J. et al. Molecules designed to contain two weakly coupled spins with photoswitchable spacer. Chem. Eur. J. 23, 13648–13659 (2017).

    Google Scholar 

  58. 58.

    Vandersypen, L. M. K. & Chuang, I. L. NMR techniques for quantum control and computation. Rev. Mod. Phys. 76, 1037 (2004).

    Google Scholar 

  59. 59.

    Ardavan, A. et al. Engineering coherent interactions in molecular nanomagnet dimers. npj Quantum Inf. 1, 15012 (2015).

    Google Scholar 

  60. 60.

    Fernández, A. et al. Making hybrid [n]-rotaxanes as supramolecular arrays of molecular electron spin qubits. Nat. Commun. 7, 10240 (2016).

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Aguilà, D. et al. Synthesis and properties of a family of unsymmetric dinuclear complexes of LnIII (Ln = Eu, Gd, Tb). Inorg. Chem. 49, 6784–6786 (2010).

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Luis, F. et al. Molecular prototypes for spin-based CNOT and SWAP quantum gates. Phys. Rev. Lett. 107, 117203 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Aguilà, D. et al. Heterodimetallic [LnLn′] lanthanide complexes: toward a chemical design of two-qubit molecular spin quantum gates. J. Am. Chem. Soc. 136, 14215–14222 (2014).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Leuenberger, M. N. & Loss, D. Quantum computing with molecular magnets. Nature 410, 789–793 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Moreno-Pineda, E., Godfrin, C., Balestro, F., Wernsdorfer, W. & Ruben, M. Molecular spin qudits for quantum algorithms. Chem. Soc. Rev. 47, 501–513 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Thiele, S. et al. Electrically driven nuclear spin resonance in single-molecule magnets. Science 344, 1135–1138 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Moreno-Pineda, E., Damjanovic, M., Fuhr, O., Wernsdorfer, W. & Ruben, M. Nuclear spin isomers: engineering a Et4N[DyPc2] spin qudit. Angew. Chem. Int. Ed. 56, 9915–9919 (2017).

    CAS  Google Scholar 

  68. 68.

    Atzori, M. et al. A two-qubit molecular architecture for electron-mediated nuclear quantum simulation. Chem. Sci. 9, 6183–6192 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Hussain, R. et al. Coherent manipulation of a molecular Ln-based nuclear qudit coupled to an electron qubit. J. Am. Chem. Soc. 140, 9814–9818 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Gibney, E. Quantum computer quest. Nature 516, 24 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Komijani, D. et al. Radical-lanthanide ferromagnetic interaction in a TbIII bis-phthalocyaninato complex. Phys. Rev. Mater. 2, 024405 (2018).

    CAS  Google Scholar 

  72. 72.

    Vincent, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W. & Balestro, F. Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 488, 357–360 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Godfrin, C. et al. Electrical read-out of a single spin using an exchange-coupled quantum dot. ACS Nano 11, 3984–3989 (2017).

    CAS  Google Scholar 

  74. 74.

    Cardona-Serra, S. & Gaita-Ariño, A. Vanadyl dithiolate single molecule transistors: the next spintronic frontier? Dalton Trans. 47, 5533–5537 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162 (2004).

    CAS  Google Scholar 

  76. 76.

    Schoelkopf, J. & Girvin, S. M. Wiring up quantum systems. Nature 451, 664 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Majer, J. et al. Coupling superconducting qubits via a cavity bus. Nature 449, 443–447 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Jenkins, M. D. et al. A scalable architecture for quantum computation with molecular nanomagnets. Dalton Trans. 45, 16682 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Mergenthaler, M. et al. Strong coupling of microwave photons to antiferromagnetic fluctuations in an organic magnet. Phys. Rev. Lett. 119, 147701 (2017).

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    Ghirri, A. et al. Coherently coupling distinct spin ensembles through a high-Tc superconducting resonator. Phys. Rev. A 93, 063855 (2016).

    Google Scholar 

  81. 81.

    Bonizzoni, C. et al. Coherent coupling between vanadyl phthalocyanine spin ensemble and microwave photons: towards integration of molecular spin qubits into quantum circuits. Sci. Rep. 7, 13096 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Jenkins, M. D. et al. Nanoscale constrictions in superconducting coplanar waveguide resonators. Appl. Phys. Lett. 105, 162601 (2014).

    Google Scholar 

  83. 83.

    Jenkins, M. D. et al. Coupling single-molecule magnets to quantum circuits. New J. Phys. 15, 095007 (2013).

    Google Scholar 

  84. 84.

    Rosaleny, L. E. et al. Peptides as versatile platforms for quantum computing. J. Phys. Chem. Lett. 9, 4522–4526 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been supported by the COST Action MolSpin on Molecular Spintronics (Project 15128) and QUANTERA (SUMO project). E.C. and A.G.A. acknowledge the EU (ERC Advanced Grant Mol-2D 788222, ERC Consolidator Grant DECRESIM 647301), the Spanish MINECO (grants MAT2017-89993-R and CTQ2017-89528-P cofinanced by FEDER and Excellence Unit María de Maeztu MDM-2015-0538), and the Generalitat Valenciana (Prometeo Program of Excellence). A.G.A. acknowledges funding by the MINECO (Ramón y Cajal Program). F.L. acknowledges the Spanish MINECO (grant MAT2015-68204-R), the Gobierno de Aragón (grant E98-MOLCHIP). S.H. acknowledges support from the NSF (grant DMR-1610226), the Air Force Office of Scientific Research (AOARD Contract No. FA2386-17-1-4040) and the Department of Energy (grant DE-SC0019330). Work performed at the NHMFL was supported by the NSF (DMR-1644779) and by the State of Florida. We acknowledge S. Cardona-Serra and O. Roubeau for preparation of Fig. 1 and Fig. 2a–d, and Fig. 4, respectively.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to A. Gaita-Ariño or F. Luis or S. Hill or E. Coronado.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gaita-Ariño, A., Luis, F., Hill, S. et al. Molecular spins for quantum computation. Nat. Chem. 11, 301–309 (2019). https://doi.org/10.1038/s41557-019-0232-y

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing