Comment | Published:

Circular chemistry to enable a circular economy

Nature Chemistryvolume 11pages190195 (2019) | Download Citation

Subjects

By expanding the scope of sustainability to the entire lifecycle of chemical products, the concept of circular chemistry aims to replace today’s linear ‘take–make–dispose’ approach with circular processes. This will optimize resource efficiency across chemical value chains and enable a closed-loop, waste-free chemical industry.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Twitter handle: @ChrisSlootweg

References

  1. 1.

    Stahel, W. R. Nature 531, 435–438 (2016).

  2. 2.

    Matlin, S. A., Mehta, G., Hopf, H. & Krief, A. Nat. Chem. 7, 941–943 (2015).

  3. 3.

    Clark, J. H., Farmer, T. J., Herrero-Davila, L. & Sherwood, J. Green Chem. 18, 3914–3934 (2016).

  4. 4.

    Anastas, P. T. & Zimmerman, J. B. Chem. 1, 10–12 (2016).

  5. 5.

    Sheldon, R. A. Green Chem. 18, 3180–3183 (2016).

  6. 6.

    Kümmerer, K. Angew. Chem. Int. Ed. 56, 16420–16421 (2017).

  7. 7.

    Linder, M. Green Chem. Lett. Rev. 10, 428–435 (2017).

  8. 8.

    Anastas, P. T & Warner, J. C (eds) in Green Chemistry: Theory and Practice (Oxford University Press, 1998).

  9. 9.

    Marteel-Parrish, A. E. & Abraham, M. A. (eds) Green Chemistry and Engineering: A Pathway to Sustainability (Wiley, Hoboken, 2014).

  10. 10.

    Erythropel, H. C. et al. Green Chem. 20, 1929–1961 (2018).

  11. 11.

    Elkington. J. 25 years ago I coined the phrase “Triple bottom line.” Here’s why it’s time to rethink it. Harvard Business Review https://go.nature.com/2DfwKPk (2018).

  12. 12.

    Sato, K., Aoki, M. & Noyori, R. Science 281, 1646–1647 (1998).

  13. 13.

    Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. Nat. Geosci. 1, 636–639 (2008).

  14. 14.

    Steffen, W. et al. Science 347, 1259855 (2015).

  15. 15.

    Matlin, S. A., Mehta, G., Hopf, H. & Krief, A. Nat. Chem. 8, 393–398 (2016).

  16. 16.

    Cavani, F., Centi, G., Perathoner, S. & Trifiró, F. (eds) Sustainable Industrial Chemistry (Wiley-VCH, Weinheim, 2009).

  17. 17.

    Nuijten, B. No time to waste: the state of the circular economy innovation within the chemical industry. Finch & Beak https://go.nature.com/2UlCbmM (2016).

  18. 18.

    Elser, B. & Ulbrich M. Taking the European chemical industry into the circular economy. Accenture https://go.nature.com/2DE4Uh6 (2017).

  19. 19.

    Accelerating Europe Towards a Sustainable Future (ChemistryCAN, Cefic, 2017).

  20. 20.

    Behr, A. & Johnen L. in Handbook of Green Chemistry: Green Synthesis Vol. 7(eds Chao-Jun, L. & Anastas, P. T) 69–92 (Wiley-VCH, 2012).

  21. 21.

    Clark, J. H. Curr. Opin. Green Sust. Chem. 8, 10–13 (2017).

  22. 22.

    Olivetti, E. A. & Cullen, J. M. Science 360, 1396–1398 (2018).

  23. 23.

    Trost, B. M. Science 254, 1471–1477 (1991).

  24. 24.

    Bender, T. A., Dabrowski, J. A. & Gagné, M. R. Nat. Rev. Chem. 2, 35–46 (2018).

  25. 25.

    Greene, J. P. Sustainable Plastics: Environmental Assessments of Biobased, Biodegradable, and Recycled Plastics (Wiley, Hoboken, 2014).

  26. 26.

    Iwata, T. Angew. Chem. Int. Ed. 54, 3210–3215 (2015).

  27. 27.

    Zhu, J.-B., Watson, E. M., Tang, J. & Chen, E. Y.-X. Science 360, 398–403 (2018).

  28. 28.

    Sardon, H. & Dove, A. P. Science 360, 380–381 (2018).

  29. 29.

    The future of plastic. Nat. Commun. 9, 2157 (2018).

  30. 30.

    Kaur, G., Uisan, K., Ong, K. L. & Lin, C. S. K. Curr. Opin. Green Sust. Chem. 9, 30–39 (2018).

  31. 31.

    Patt, J. J. & Banholzer, W. F. The Bridge 39, 15–22 (2009).

  32. 32.

    Facts & Figures 2018 of the European Chemical Industry (Cefic, 2018).

  33. 33.

    Das Neves Gomes, C. et al. Angew. Chem. Int. Ed. 51, 187–190 (2012).

  34. 34.

    Figge, F., Stevenson Thorpe, A., Givry, P., Canning, L. & Franklin-Johnson, E. Ecol. Econ. 150, 297–306 (2018).

  35. 35.

    Chemicals and the Circular Economy: Dealing with Substances of Concern (European Parliament, 2017).

  36. 36.

    Hurley, R., Woodward, J. & Rothwell, J. J. Nat. Geosci. 11, 251–257 (2018).

  37. 37.

    Mulvihill, M. J., Beach, E. S., Zimmerman, J. B. & Anastas, P. T. Annu. Rev. Environ. Resour. 36, 271–293 (2011).

  38. 38.

    Sustainability hotspot scan: Sustainability opportunities and risks for the chemical value chain. TNO https://go.nature.com/2UvZURB (2019).

  39. 39.

    Constable, D. J. C., Jiménez-González, C. in Handbook of Green Chemistry: Green Synthesis Vol. 7 (eds Chao-Jun, L. & Anastas, P. T) 69–92 (Wiley-VCH, 2012).

  40. 40.

    Saidani, M., Yannou, B., Leroy, Y. & Cluzel, F. Recycling 2, 6 (2017).

  41. 41.

    Korse, M. Resource hierachy explained. Facio https://go.nature.com/2UkLTFW (2016).

  42. 42.

    Lansink, A. Waste Manag. Res. 36, 872 (2017).

  43. 43.

    Raworth, K. Doughnut Economics. (Cornerstone, London, 2017).

  44. 44.

    Moser, F. & Jakl, T. Environ. Sci. Pollut. Res. Int. 22, 6325–6348 (2015).

  45. 45.

    Suurs, R. & Roelofs, E. Systemic Innovation: Concepts and Tools for Strengthening National and European Eco-policies https://go.nature.com/2DbanuB (TNO, 2014).

  46. 46.

    Frantzeskakia, N. & Loorbach, D. Technol. Forecast. Soc. Change 77, 1292–1301 (2010).

  47. 47.

    Etzkowitz, H. & Leydesdorff, L. Res. Policy 29, 109–123 (2000).

  48. 48.

    Governments going Circular – Global Scan Best Practices. De Groene Zaak http://www.govsgocircular.com (2019).

  49. 49.

    Reniers, G. L. L., Sörensen, K. & Vrancken, K. Management Principles of Sustainable Industrial Chemistry: Theories, Concepts and Industrial Examples for Achieving Sustainable Chemical Products and Processes from a Non-Technological Viewpoint (Wiley-VCH, Weinheim, 2013).

  50. 50.

    Blum, C. et al. Sustainable Chem. Pharm. 5, 94–104 (2017).

  51. 51.

    Whitesides, G. M. Angew. Chem. Int. Ed. 54, 3196–3209 (2015).

  52. 52.

    Transforming our world: the 2030 Agenda for Sustainable Development. Sustainable Development Goals Knowledge Platform https://go.nature.com/2FWSseG (2015).

  53. 53.

    Thornton, B. F. & Burdette, S. C. Nat. Chem. 11, 4–10 (2019).

Download references

Acknowledgements

This work was supported by the Council for Chemical Sciences of The Netherlands Organization for Scientific Research (NWO/CW and NWO/TTO) by a VIDI grant (J.C.S.) and a STW Take-off grant (J.C.S.). We gratefully acknowledge the MChem Green Chemistry class of 2016 and 2017 and D. Appel (Index Initiative) and T. Cantat (CEA Saclay) for stimulating discussions.

Author information

Affiliations

  1. Van ‘t Hoff Institute for Molecular Sciences, Research Priority Area Sustainable Chemistry, University of Amsterdam, Science Park 904, Amsterdam, Netherlands

    • Tom Keijer
    • , Vincent Bakker
    •  & J. Chris Slootweg

Authors

  1. Search for Tom Keijer in:

  2. Search for Vincent Bakker in:

  3. Search for J. Chris Slootweg in:

Corresponding author

Correspondence to J. Chris Slootweg.

About this article

Publication history

Published

Issue Date

DOI

https://doi.org/10.1038/s41557-019-0226-9

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing