Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An automated platform for the enzyme-mediated assembly of complex oligosaccharides

Abstract

An automated platform that can synthesize a wide range of complex carbohydrates will greatly increase their accessibility and should facilitate progress in glycoscience. Here we report a fully automated process for enzyme-mediated oligosaccharide synthesis that can give easy access to different classes of complex glycans including poly-N-acetyllactosamine derivatives, human milk oligosaccharides, gangliosides and N-glycans. Our automated platform uses a catch and release approach in which glycosyltransferase-catalysed reactions are performed in solution and product purification is accomplished by solid phase extraction. We developed a sulfonate tag that can easily be installed and enables highly efficient solid phase extraction and product release using a single set of washing conditions, regardless of the complexity of the glycan. Using this custom-built synthesizer, as many as 15 reaction cycles can be performed in an automated fashion without a need for lyophilization or buffer exchange steps.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Automation of enzyme-mediated oligosaccharide assembly.
Fig. 2: Automated enzymatic synthesis of poly-LacNAc and derivatives thereof.
Fig. 3: Automated synthesis of HMOs and gangliosides.
Fig. 4: Automated synthesis of asymmetrical N-glycan 22 and removal of tag to afford 23.

Data availability

All data related to this study are included in this Article and the Supplementary Information and are also available from the authors upon request.

References

  1. 1.

    Merrifield, R. B. Automated synthesis of peptides. Science 150, 178–185 (1965).

    CAS  Article  Google Scholar 

  2. 2.

    Caruthers, M. H. Gene synthesis machines: DNA chemistry and its uses. Science 230, 281–285 (1985).

    CAS  Article  Google Scholar 

  3. 3.

    Coin, I., Beyermann, M. & Bienert, M. Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat. Protoc. 2, 3247–3256 (2007).

    CAS  Article  Google Scholar 

  4. 4.

    Kent, S. B. Total chemical synthesis of proteins. Chem. Soc. Rev. 38, 338–351 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    Plante, O. J., Palmacci, E. R. & Seeberger, P. H. Automated solid-phase synthesis of oligosaccharides. Science 291, 1523–1527 (2001).

    CAS  Article  Google Scholar 

  6. 6.

    Hahm, H. S. et al. Automated glycan assembly using the Glyconeer 2.1 synthesizer. Proc. Natl Acad. Sci. USA 114, E3385–E3389 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Tang, S. L. & Pohl, N. L. Automated solution-phase synthesis of β-1,4-mannuronate and β-1,4-mannan. Org. Lett. 17, 2642–2645 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Li, J. et al. Synthesis of many different types of organic small molecules using one automated process. Science 347, 1221–1226 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Buitrago Santanilla, A. et al. Nanomole-scale high-throughput chemistry for the synthesis of complex molecules. Science 347, 49–53 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Perera, D. et al. A platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flow. Science 359, 429–434 (2018).

    CAS  Article  Google Scholar 

  11. 11.

    Gesmundo, N. J. et al. Nanoscale synthesis and affinity ranking. Nature 557, 228–232 (2018).

    CAS  Article  Google Scholar 

  12. 12.

    Piel, J. (ed.) Natural Products via Enzymatic Reactions (Springer-Verlag, Berlin, 2010).

  13. 13.

    Boltje, T. J., Buskas, T. & Boons, G. J. Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nat. Chem. 1, 611–622 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    Unverzagt, C., Kunz, H. & Paulson, J. C. High-efficiency synthesis of sialyloligosaccharides and sialoglycopeptides. J. Am. Chem. Soc. 112, 9308–9309 (1990).

    CAS  Article  Google Scholar 

  15. 15.

    Muthana, S., Cao, H. & Chen, X. Recent progress in chemical and chemoenzymatic synthesis of carbohydrates. Curr. Opin. Chem. Biol. 13, 573–581 (2009).

    CAS  Article  Google Scholar 

  16. 16.

    Moremen, K. W. et al. Expression system for structural and functional studies of human glycosylation enzymes. Nat. Chem. Biol. 14, 156–162 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    Cai, L. Recent progress in enzymatic synthesis of sugar nucleotides. J. Carbohydr. Chem. 31, 535–552 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    Wang, Z. et al. A general strategy for the chemoenzymatic synthesis of asymmetrically branched N-glycans. Science 341, 379–383 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    Prudden, A. R. et al. Synthesis of asymmetrical multiantennary human milk oligosaccharides. Proc. Natl Acad. Sci. USA 114, 6954–6959 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Sears, P. & Wong, C. H. Toward automated synthesis of oligosaccharides and glycoproteins. Science 291, 2344–2350 (2001).

    CAS  Article  Google Scholar 

  21. 21.

    Halcomb, R. L., Huang, H. & Wong, C.-H. Solution- and solid-phase synthesis of inhibitors of H. pylori attachment and E-selectin-mediated leukocyte adhesion. J. Am. Chem. Soc. 116, 11315–11322 (1994).

    CAS  Article  Google Scholar 

  22. 22.

    Blixt, O. & Norberg, T. Solid-phase enzymatic synthesis of a sialyl Lewis X tetrasaccharide on a sepharose matrix. J. Org. Chem. 63, 2705–2710 (1998).

    CAS  Article  Google Scholar 

  23. 23.

    Hanashima, S., Manabe, S. & Ito, Y. Divergent synthesis of sialylated glycan chains: combined use of polymer support, resin capture–release, and chemoenzymatic strategies. Angew. Chem. Int. Ed. 44, 4218–4224 (2005).

    CAS  Article  Google Scholar 

  24. 24.

    Galan, M. C., Tran, A. T. & Bernard, C. Ionic-liquid-based catch and release mass spectroscopy tags for enzyme monitoring. Chem. Commun. 46, 8968–8970 (2010).

    CAS  Article  Google Scholar 

  25. 25.

    Cai, C. et al. Fluorous-assisted chemoenzymatic synthesis of heparan sulfate oligosaccharides. Org. Lett. 16, 2240–2243 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    Hwang, J. et al. Highly efficient one-pot multienzyme (OPME) synthesis of glycans with fluorous-tag assisted purification. Chem. Commun. 50, 3159–3162 (2014).

    CAS  Article  Google Scholar 

  27. 27.

    Huang, X., Witte, K. L., Bergbreiter, D. E. & Wong, C.-H. Homogenous enzymatic synthesis using a thermo-responsive water-soluble polymer support. Adv. Synth. Catal. 343, 675–681 (2001).

    CAS  Article  Google Scholar 

  28. 28.

    Matsushita, T. et al. Artificial golgi apparatus: globular protein-like dendrimer facilitates fully automated enzymatic glycan synthesis. J. Am. Chem. Soc. 132, 16651–16656 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    Martin, J. G. et al. Toward an artificial golgi: redesigning the biological activities of heparan sulfate on a digital microfluidic chip. J. Am. Chem. Soc. 131, 11041–11048 (2009).

    CAS  Article  Google Scholar 

  30. 30.

    Munneke, S., Dangerfield, E. M., Stocker, B. L. & Timmer, M. S. M. The versatility of N-alkyl-methoxyamine bi-functional linkers for the preparation of glycoconjugates. Glycoconj. J. 34, 633–642 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    Bode, L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 22, 1147–1162 (2012).

    CAS  Article  Google Scholar 

  32. 32.

    Schnaar, R. L., Gerardy-Schahn, R. & Hildebrandt, H. Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol. Rev. 94, 461–518 (2014).

    Article  Google Scholar 

  33. 33.

    Liu, L., Prudden, A. R., Bosman, G. P. & Boons, G. J. Improved isolation and characterization procedure of sialylglycopeptide from egg yolk powder. Carbohydr. Res. 452, 122–128 (2017).

    CAS  Article  Google Scholar 

  34. 34.

    Joziasse, D. H. et al. Branch specificity of bovine colostrum CMP-sialic acid: Gal-β-1,4-GlcNAc-R α-2,6-sialyltransferase. Sialylation of bi-, tri-, and tetraantennary oligosaccharides and glycopeptides of the N-acetyllactosamine type. J. Biol. Chem. 262, 2025–2033 (1987).

    CAS  PubMed  Google Scholar 

  35. 35.

    Dube, D. H. & Bertozzi, C. R. Glycans in cancer and inflammation. Potential for therapeutics and diagnostics. Nat. Rev. Drug Discov. 4, 477–488 (2005).

    CAS  Article  Google Scholar 

  36. 36.

    Pilobello, K. T. & Mahal, L. K. Deciphering the glycocode: the complexity and analytical challenge of glycomics. Curr. Opin. Chem. Biol. 11, 300–305 (2007).

    CAS  Article  Google Scholar 

  37. 37.

    Kiessling, L. L. & Splain, R. A. Chemical approaches to glycobiology. Annu. Rev. Biochem. 79, 619–653 (2010).

    CAS  Article  Google Scholar 

  38. 38.

    Smith, D. F. & Cummings, R. D. Application of microarrays for deciphering the structure and function of the human glycome. Mol. Cell. Proteomics 12, 902–912 (2013).

    CAS  Article  Google Scholar 

  39. 39.

    Wang, L. X. & Amin, M. N. Chemical and chemoenzymatic synthesis of glycoproteins for deciphering functions. Chem. Biol. 21, 51–66 (2014).

    Article  Google Scholar 

  40. 40.

    Hsu, C. H., Hung, S. C., Wu, C. Y. & Wong, C. H. Toward automated oligosaccharide synthesis. Angew. Chem. Int. Ed. 50, 11872–11923 (2011).

    CAS  Article  Google Scholar 

  41. 41.

    Ganesh, N. V., Fujikawa, K., Tan, Y. H., Stine, K. J. & Demchenko, A. V. HPLC-assisted automated oligosaccharide synthesis. Org. Lett. 14, 3036–3039 (2012).

    CAS  Article  Google Scholar 

  42. 42.

    Crich, D. Mechanism of a chemical glycosylation reaction. Acc. Chem. Res. 43, 1144–1153 (2010).

    CAS  Article  Google Scholar 

  43. 43.

    Schmaltz, R. M., Hanson, S. R. & Wong, C. H. Enzymes in the synthesis of glycoconjugates. Chem. Rev. 111, 4259–4307 (2011).

    CAS  Article  Google Scholar 

  44. 44.

    Togayachi, A. et al. Polylactosamine on glycoproteins influences basal levels of lymphocyte and macrophage activation. Proc. Natl Acad. Sci. USA 104, 15829–15834 (2007).

    CAS  Article  Google Scholar 

  45. 45.

    Peng, W. et al. Recent H3N2 viruses have evolved specificity for extended, branched human-type receptors, conferring potential for increased avidity. Cell Host Microbe 21, 23–34 (2017).

    CAS  Article  Google Scholar 

  46. 46.

    Venkitachalam, S. et al. Biochemical and functional characterization of glycosylation-associated mutational landscapes in colon cancer. Sci. Rep. 6, 23642 (2016).

    CAS  Article  Google Scholar 

  47. 47.

    Zhang, M. et al. Association of anti-GT1a antibodies with an outbreak of Guillain–Barre syndrome and analysis of ganglioside mimicry in an associated Campylobacter jejuni strain. PLoS One 10, e0131730 (2015).

    Article  Google Scholar 

  48. 48.

    Hamasaki, H. et al. GT1b in human metastatic brain tumors: GT1b as a brain metastasis-associated ganglioside. Biochim. Biophys. Acta 1437, 93–99 (1999).

    CAS  Article  Google Scholar 

  49. 49.

    Komori, T., Imamura, A., Ando, H., Ishida, H. & Kiso, M. Study on systematizing the synthesis of the a-series ganglioside glycans GT1a, GD1a, and GM1 using the newly developed N-Troc-protected GM3 and GalN intermediates. Carbohydr. Res. 344, 1453–1463 (2009).

    CAS  Article  Google Scholar 

  50. 50.

    Ishida, H.-K., Ishida, H., Kiso, M. & Hasegawa, A. Total synthesis of ganglioside GQ1b and the related polysialogangliosides. Tetrahedron Asymm. 5, 2493–2512 (1994).

    CAS  Article  Google Scholar 

  51. 51.

    Meng, X. et al. Regioselective chemoenzymatic synthesis of ganglioside disialyl tetrasaccharide epitopes. J. Am. Chem. Soc. 136, 5205–5208 (2014).

    CAS  Article  Google Scholar 

  52. 52.

    Yu, H. et al. Sequential one-pot multienzyme chemoenzymatic synthesis of glycosphingolipid glycans. J. Org. Chem. 81, 10809–10824 (2016).

    CAS  Article  Google Scholar 

  53. 53.

    Yu, H. et al. Streamlined chemoenzymatic total synthesis of prioritized ganglioside cancer antigens. Org. Biomol. Chem. 16, 4076–4080 (2018).

    CAS  Article  Google Scholar 

  54. 54.

    Chen, Q. et al. Evidence for differential glycosylation of trophoblast cell types. Mol. Cell. Proteomics 15, 1857–1866 (2016).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Institute of General Medical Sciences (P01GM107012 and U01GM120408 to G.-J.B. and K.W.M.), the US National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The research benefitted from instrumentation provided by NIH grant S10 RR027097.

Author information

Affiliations

Authors

Contributions

T.L., L.L., K.W.M. and G.-J.B. designed the research. T.L., L.L., N.W., J.-Y.Y. and D.G.C. performed the research. J.-Y.Y. and D.G.C. contributed new reagents. T.L., L.L. and G.-J.B. wrote the paper.

Corresponding author

Correspondence to Geert-Jan Boons.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Materials and detailed Methods, Supplementary Figures 1–33, Supplementary Tables 1–21 and copies of NMR spectra.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, T., Liu, L., Wei, N. et al. An automated platform for the enzyme-mediated assembly of complex oligosaccharides. Nature Chem 11, 229–236 (2019). https://doi.org/10.1038/s41557-019-0219-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing