Catalytic transport of molecular cargo using diffusive binding along a polymer track

Abstract

Transport at the molecular scale is a prerequisite for the development of future molecular factories. Here, we have designed oligoanionic molecular sliders on polycationic tracks that exploit Brownian motion and diffusive binding to transport cargo without using a chemical fuel. The presence of the polymer tracks increases the rate of bimolecular reactions between modified sliders by over two orders of magnitude. Molecular dynamics simulations showed that the sliders not only diffuse, but also jump and hop surprisingly efficiently along polymer tracks. Inspired by acetyl-coenzyme A transporting and delivering acetyl groups in many essential biochemical processes, we developed a new and unconventional type of catalytic transport involving sliders (including coenzyme A) picking up, transporting and selectively delivering molecular cargo. Furthermore, we show that the concept of diffusive binding can also be utilized for the spatially controlled transport of chemical groups across gels. This work represents a new concept for designing functional nanosystems based on random Brownian motion.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic representation of the slider–track system.
Fig. 2: Kinetics studies of fluorogenic reactions between chemically charged sliders.
Fig. 3: MD simulations of sliders on polycationic tracks.
Fig. 4: Inter-track molecular cargo transport.
Fig. 5: Molecular cargo transport within physically separated compartments.

Data availability

The authors declare that all the data generated and analysed during this study are included within this Article and its Supplementary Information. The software and codes used to perform simulation and analysis are cited in the Article. The data sets are available from authors Y.H. and P.K. on reasonable request.

References

  1. 1.

    Shliwa, M. & Woehlke, G. Molecular motors. Nature 422, 759–765 (2003).

    Article  Google Scholar 

  2. 2.

    Kinbara, K. & Aida, T. Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem. Rev. 105, 1377–1400 (2005).

    CAS  Article  Google Scholar 

  3. 3.

    Browne, W. R. & Feringa, B. L. Making molecular machines work. Nat. Nanotech. 1, 25–35 (2006).

    CAS  Article  Google Scholar 

  4. 4.

    Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Grzybowski, B. A. & Huck, W. T. S. The nanotechnology of life-inspired systems. Nat. Nanotech. 11, 585–592 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    Wickham, S. F. J. et al. Direct observation of stepwise movement of a synthetic molecular transporter. Nat. Nanotech. 6, 166–169 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    Gu, H., Chao, J., Xiao, S. J. & Seeman, N. C. A proximity-based programmable DNA nanoscale assembly line. Nature 465, 202–205 (2010).

    CAS  Article  Google Scholar 

  9. 9.

    von Delius, M., Geertsema, E. M. & Leigh, D. A. A synthetic small molecule that can walk down a track. Nat. Chem. 2, 96–101 (2010).

    Article  Google Scholar 

  10. 10.

    Kassem, S., Lee, A. T. L., Leigh, D. A., Markevicius, A. & Solà, J. Pick-up, transport and release of a molecular cargo using a small-molecule robotic arm. Nat. Chem. 8, 138–143 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Chen, J., Wezenberg, S. J. & Feringa, B. L. Intramolecular transport of small-molecule cargo in a nanoscale device operated by light. Chem. Commun. 52, 6765–6768 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Soh, S., Byrska, M., Kandere-Grzybowska, K. & Grzybowski, B. A. Reaction–diffusion systems in intracellular molecular transport and control. Angew. Chem. Int. Ed. 49, 4170–4198 (2010).

    CAS  Article  Google Scholar 

  13. 13.

    Kopperger, E., Pirzer, T. & Simmel, F. C. Diffusive transport of molecular cargo tethered to a DNA origami platform. Nano Lett. 15, 2693–2699 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Thubagere, A. J. et al. A cargo-sorting DNA robot. Science 357, 1112–1121 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    Perl, A. et al. Gradient-driven motion of multivalent ligand molecules along a surface functionalized with multiple receptors. Nat. Chem. 3, 317–322 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    Pulcu, G. S., Mikhailova, E., Choi, L. S. & Bayley, H. Continuous observation of the stochastic motion of an individual small-molecule walker. Nat. Nanotech. 10, 76–83 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Campaña, A. G. et al. A small molecule that walks non-directionally along a track without external intervention. Angew. Chem. Int. Ed. 51, 5480–5483 (2012).

    Article  Google Scholar 

  18. 18.

    Campaña, A. G., Leigh, D. A. & Lewandowska, U. One-dimensional random walk of a synthetic small molecule toward a thermodynamic sink. J. Am. Chem. Soc. 135, 8639–8645 (2013).

    Article  Google Scholar 

  19. 19.

    Thordarson, P., Bijsterveld, E. J. A., Rowan, A. E. & Nolte, R. J. M. Epoxidation of polybutadiene by a topologically linked catalyst. Nature 424, 915–918 (2003).

    CAS  Article  Google Scholar 

  20. 20.

    van Dongen, S. F. M. et al. A clamp-like biohybrid catalyst for DNA oxidation. Nat. Chem. 5, 945–951 (2013).

    Article  Google Scholar 

  21. 21.

    Givaty, O. & Levy, Y. Protein sliding along DNA: dynamics and structural characterization. J. Mol. Biol. 385, 1087–1097 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    Vuzman, D. & Levy, Y. DNA search efficiency is modulated by charge composition and distribution in the intrinsically disordered tail. Proc. Natl Acad. Sci. USA 107, 21004–21009 (2010).

    CAS  Article  Google Scholar 

  23. 23.

    Blainey, P. C. et al. Nonspecifically bound proteins spin while diffusing along DNA. Nat. Struct. Mol. Biol. 16, 1224–1229 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    Mangel, W. F. et al. Molecular sled is an eleven-amino acid vehicle facilitating biochemical interactions via sliding components along DNA. Nat. Commun. 7, 10202 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Berg, O. G., Winter, R. B. & von Hippel, P. H. Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 20, 6929–6948 (1981).

    CAS  Article  Google Scholar 

  26. 26.

    Zhong, D., Douhal, A. & Zewail, A. H. Femtosecond studies of protein–ligand hydrophobic binding and dynamics: human serum albumin. Proc. Natl Acad. Sci. USA 97, 14056–14061 (2000).

    CAS  Article  Google Scholar 

  27. 27.

    Jeltsch, A. & Urbanke, C. in Restriction Endonucleases (ed. Pingoud, A. M.) 95–110 (Nucleic Acids and Molecular Biology series, Springer, Heidelberg, 2004).

  28. 28.

    Ross, P. D. & Subramanian, S. Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20, 3096–3102 (1981).

    CAS  Article  Google Scholar 

  29. 29.

    Turkin, A. et al. Speeding up biomolecular interactions by molecular sledding. Chem. Sci. 7, 916–920 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    Xiong, K., Erwin, G. S., Ansari, A. Z. & Blainey, P. C. Sliding on DNA: from peptides to small molecules. Angew. Chem. Int. Ed. 55, 15110–15114 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    Zhang, L. et al. Accelerating chemical reactions by molecular sledding. Chem. Commun. 53, 6331–6334 (2017).

    CAS  Article  Google Scholar 

  32. 32.

    Zhang, D., Gullingsrud, J. & McCammon, J. A. Potentials of mean force for acetylcholine unbinding from the α7 nicotinic acetylcholine receptor ligand-binding domain. J. Am. Chem. Soc. 128, 3019–3026 (2006).

    CAS  Article  Google Scholar 

  33. 33.

    Giorgino, T. Computing Diffusion Coefficients in Macromolecular Simulations: The Diffusion Coefficient Tool for VMD https://github.com/tonigi/vmd_diffusion_coefficient (2011).

  34. 34.

    Elovson, J. & Vagelos, P. R. Acyl carrier protein. X. Acyl carrier protein synthetase. J. Biol. Chem. 243, 3603–3611 (1968).

    CAS  Google Scholar 

  35. 35.

    Fang, X., Yu, P. & Morandi, B. Catalytic reversible alkene-nitrile interconversion through controllable transfer hydrocyanation. Science 351, 832–836 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    Fang, X., Cacherat, B. & Morandi, B. CO- and HCl-free synthesis of acid chlorides from unsaturated hydrocarbons via shuttle catalysis. Nat. Chem. 9, 1105–1109 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    Maiti, S., Fortunati, I., Ferrante, C., Scrimin, P. & Prins, L. J. Dissipative self-assembly of vesicular nanoreactors. Nat. Chem. 8, 725–731 (2016).

    CAS  Article  Google Scholar 

  38. 38.

    Campbell, C. J., Klajn, R., Fialkowski, M. & Grzybowski, B. A. One-step multilevel microfabrication by reaction–diffusion. Langmuir 21, 418–423 (2005).

    CAS  Article  Google Scholar 

  39. 39.

    Semenov, S. N., Markvoort, A. J., de Greef, T. F. A. & Huck, W. T. S. Threshold sensing through a synthetic enzymatic reaction–diffusion network. Angew. Chem. Int. Ed. 53, 8066–8069 (2014).

    CAS  Article  Google Scholar 

  40. 40.

    Bochicchio, D., Salvalaglio, M. & Pavan, G. M. Into the dynamics of supramolecular polymers at submolecular resolution. Nat. Commun. 8, 147 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Netherlands Organization for Scientific Research (NWO) TOPPUNT grant 718.014.001 (to W.T.S.H.), the Ministry of Education, Culture and Science (Gravity programme, 024.001.035, to W.T.S.H.), an NSF DMR-1506886 grant (to P.K.) and by start-up funding from the University of Texas at El Paso (to L.V.). H.Z. is a recipient of a Radboud Excellence Fellowship.

Author information

Affiliations

Authors

Contributions

W.T.S.H. supervised the research. L.Z., H.Z. and W.T.S.H. planned the project and designed experiments. L.Z. and H.Z. synthesized and characterized all compounds. L.Z. and H.Z. performed kinetic studies of fluorogenic reactions and analysed data. L.Z. and H.Q. performed catalytic molecular transfer experiments and analysed data. L.Z. and J.M. analysed the ITC data. Y.H., L.V. and P.K. performed computational simulations. L.Z., Y.H., P.K. and W.T.S.H. wrote the manuscript.

Corresponding authors

Correspondence to Lifei Zheng or Wilhelm T. S. Huck.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental procedures, characterization of all compounds, and details of molecular dynamic simulations.

Supplementary Movie 1

Supplementary movie showing diffusion of Arg18-S-coumarin inside nc-PAAm gel matrix.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, L., Zhao, H., Han, Y. et al. Catalytic transport of molecular cargo using diffusive binding along a polymer track. Nat. Chem. 11, 359–366 (2019). https://doi.org/10.1038/s41557-018-0204-7

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing