Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fast galvanic lithium corrosion involving a Kirkendall-type mechanism

Abstract

Developing a viable metallic lithium anode is a prerequisite for next-generation batteries. However, the low redox potential of lithium metal renders it prone to corrosion, which must be thoroughly understood for it to be used in practical energy-storage devices. Here we report a previously overlooked mechanism by which lithium deposits can corrode on a copper surface. Voids are observed in the corroded deposits and a Kirkendall-type mechanism is validated through electrochemical analysis. Although it is a long-held view that lithium corrosion in electrolytes involves direct charge-transfer through the lithium–electrolyte interphase, the corrosion observed here is found to be governed by a galvanic process between lithium and the copper substrate—a pathway largely neglected by previous battery corrosion studies. The observations are further rationalized by detailed analyses of the solid–electrolyte interphase formed on copper and lithium, where the disparities in electrolyte reduction kinetics on the two surfaces can account for the fast galvanic process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Kirkendall voids formed in Li deposits.
Fig. 2: Dendritic Li growth on Li deposits with interval rests.
Fig. 3: Coulombic loss of Li at various rest times.
Fig. 4: Quantifying the galvanic corrosion and proposed mechanisms.
Fig. 5: SEI analyses on Cu and Li surfaces with cryo-EM and XPS.

Similar content being viewed by others

Data availability

All the data supporting the findings of this study are available within the article and its Supplementary Information, and from the corresponding authors upon reasonable request.

References

  1. Jones, D. A. Principles and Prevention of Corrosion (Macmillan, New York, 1992).

  2. Bard, A. J., Faulkner, L. R., Leddy, J. & Zoski, C. G. Electrochemical Methods: Fundamentals and Applications Vol. 2 (Wiley, New York, 1980).

    Google Scholar 

  3. Winter, M. & Brodd, R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4270 (2004).

    Article  CAS  Google Scholar 

  4. Tarascon, J.-M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  CAS  Google Scholar 

  5. Goodenough, J. B. & Park, K.-S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    Article  CAS  Google Scholar 

  6. Park, H. et al. Thermal behavior of solid electrolyte interphase films deposited on graphite electrodes with different states-of-charge. J. Electrochem. Soc. 162, A892–A896 (2015).

    Article  CAS  Google Scholar 

  7. Fong, R., von Sacken, U. & Dahn, J. R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J. Electrochem. Soc. 137, 2009–2013 (1990).

    Article  CAS  Google Scholar 

  8. Dunn, B., Kamath, H. & Tarascon, J. –M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

    Article  CAS  Google Scholar 

  9. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

    Article  CAS  Google Scholar 

  10. Aurbach, D. et al. On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J. Electrochem. Soc. 156, A694–A702 (2009).

    Article  CAS  Google Scholar 

  11. Harrison, K. L. et al. Lithium self-discharge and its prevention: direct visualization through in situ electrochemical scanning transmission electron microscopy. ACS Nano 11, 11194–11205 (2017).

    Article  CAS  Google Scholar 

  12. Pei, A., Zheng, G., Shi, F., Li, Y. & Cui, Y. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17, 1132–1139 (2017).

    Article  CAS  Google Scholar 

  13. Yang, H., Fey, E. O., Trimm, B. D., Dimitrov, N. & Whittingham, M. S. Effects of pulse plating on lithium electrodeposition, morphology and cycling efficiency. J. Power Sources 272, 900–908 (2014).

    Article  CAS  Google Scholar 

  14. Zheng, J. et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy 2, 17012 (2017).

    Article  CAS  Google Scholar 

  15. Chen, S. et al. High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule 2, 1548–1558 (2018).

  16. Fan, X. et al. Non-flammable electrolyte enables Li–metal batteries with aggressive cathode chemistries. Nat. Nanotech. 13, 715–722 (2018).

    Article  CAS  Google Scholar 

  17. Kozen, A. C. et al. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9, 5884–5892 (2015).

    Article  CAS  Google Scholar 

  18. Liu, Y. et al. An ultrastrong double-layer nanodiamond interface for stable lithium metal anodes. Joule 2, 1595–1609 (2018).

    Article  CAS  Google Scholar 

  19. Xie, J. et al. Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode. Sci. Adv. 3, eaao3170 (2017).

    Article  Google Scholar 

  20. Lin, D. et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotech. 11, 626–632 (2016).

    Article  CAS  Google Scholar 

  21. Yang, C.-P., Yin, Y.-X., Zhang, S.-F., Li, N.-W. & Guo, Y.-G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015).

    Article  CAS  Google Scholar 

  22. Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014).

    Article  CAS  Google Scholar 

  23. Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotech. 12, 194–206 (2017).

    Article  CAS  Google Scholar 

  24. Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article  CAS  Google Scholar 

  25. Ryou, M. H., Lee, Y. M., Lee, Y., Winter, M. & Bieker, P. Mechanical surface modification of lithium metal: towards improved Li metal anode performance by directed Li plating. Adv. Funct. Mater. 25, 834–841 (2015).

    Article  CAS  Google Scholar 

  26. Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051 (1979).

    Article  CAS  Google Scholar 

  27. Aurbach, D., Gofer, Y. & Langzam, J. The correlation between surface chemistry, surface morphology, and cycling efficiency of lithium electrodes in a few polar aprotic systems. J. Electrochem. Soc. 136, 3198–3205 (1989).

    Article  CAS  Google Scholar 

  28. Aurbach, D., Youngman, O. & Dan, P. The electrochemical behavior of 1, 3-dioxolane–LiClO4 solutions—II. Contaminated solutions. Electrochim. Acta 35, 639–655 (1990).

    Article  CAS  Google Scholar 

  29. Odziemkowski, M. & Irish, D. E. An electrochemical study of the reactivity at the lithium electrolyte/bare lithium metal interface: I. Purified electrolytes. J. Electrochem. Soc. 139, 3063–3074 (1992).

    Article  CAS  Google Scholar 

  30. Aurbach, D., Ein‐Ely, Y. & Zaban, A. The surface chemistry of lithium electrodes in alkyl carbonate solutions. J. Electrochem. Soc. 141, L1–L3 (1994).

    Article  CAS  Google Scholar 

  31. Peled, E., Golodnitsky, D. & Ardel, G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 144, L208–L210 (1997).

    Article  CAS  Google Scholar 

  32. Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 148, 405–416 (2002).

    Article  CAS  Google Scholar 

  33. Aurbach, D. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 89, 206–218 (2000).

    Article  CAS  Google Scholar 

  34. Cheng, X. B. et al. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 3, 1500213 (2016).

    Article  Google Scholar 

  35. Keil, P. et al. Calendar aging of lithium-ion batteries: I. Impact of the graphite anode on capacity fade. J. Electrochem. Soc. 163, A1872–A1880 (2016).

    Article  CAS  Google Scholar 

  36. Smigelskas, A. & Kirkendall, E. Zinc diffusion in alpha brass. Trans. Metall. Soc. AIME 171, 130–142 (1947).

  37. Yin, Y. et al. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304, 711–714 (2004).

    Article  CAS  Google Scholar 

  38. Chee, S. W., Tan, S. F., Baraissov, Z., Bosman, M. & Mirsaidov, U. Direct observation of the nanoscale Kirkendall effect during galvanic replacement reactions. Nat. Commun. 8, 1224 (2017).

    Article  Google Scholar 

  39. Oldfield, J. W. in Galvanic Corrosion (ed. Hack, H. P.) 5–22 (ASTM International, Philadelphia, 1988).

  40. Li, W. et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015).

    Article  Google Scholar 

  41. Li, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017).

    Article  CAS  Google Scholar 

  42. Peled, E. & Menkin, S. SEI: past, present and future. J. Electrochem. Soc. 164, A1703–A1719 (2017).

    Article  CAS  Google Scholar 

  43. Chen, K. -H. et al. Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Mater. Chem. A 5, 11671–11681 (2017).

    Article  CAS  Google Scholar 

  44. Soto, F. A., Ma, Y., Martinez de la Hoz, J. M., Seminario, J. M. & Balbuena, P. B. Formation and growth mechanisms of solid–electrolyte interphase layers in rechargeable batteries. Chem. Mater. 27, 7990–8000 (2015).

    Article  CAS  Google Scholar 

  45. Anderson, B. D. & Tracy, J. B. Nanoparticle conversion chemistry: Kirkendall effect, galvanic exchange, and anion exchange. Nanoscale 6, 12195–12216 (2014).

    Article  CAS  Google Scholar 

  46. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).

    Article  CAS  Google Scholar 

  47. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    Article  CAS  Google Scholar 

  48. Thevenin, J. & Muller, R. Impedance of lithium electrodes in a propylene carbonate electrolyte. J. Electrochem. Soc. 134, 273–280 (1987).

    Article  CAS  Google Scholar 

  49. Peled, E. et al. The role of SEI in lithium and lithium ion batteries. Mater. Res. Soc. Symp. 393, 209 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y.C. acknowledges support from the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy under the Battery Materials Research (BMR) program and Battery500 consortium.

Author information

Authors and Affiliations

Authors

Contributions

D.L., Y.Liu and Y.C. conceived the project and designed the experiments. D.L. and Y.Liu performed the electrochemical studies. D.L. and Y.Liu conducted the FIB characterizations. Ya.Li and Yu.Li performed the cryo-EM characterizations. A.P. and D.L. performed the 3D modelling and finite element analysis. J.X. carried out the ALD coating of LiF on the Cu substrates. D.L. analysed the results. D.L. and Y.C. co-wrote the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yi Cui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1–40, Supplementary Methods, and Supplementary Movie Captions

Supplementary Movie 1

Movie of FIB millings of 10 representative Li deposits without rest in the electrolyte

Supplementary Movie 2

Movie of FIB millings of 10 representative Li deposits after rest in the electrolyte for 100 hours

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, D., Liu, Y., Li, Y. et al. Fast galvanic lithium corrosion involving a Kirkendall-type mechanism. Nat. Chem. 11, 382–389 (2019). https://doi.org/10.1038/s41557-018-0203-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0203-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing