Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2


The electrochemical reduction of CO2 could play an important role in addressing climate-change issues and global energy demands as part of a carbon-neutral energy cycle. Single-atom catalysts can display outstanding electrocatalytic performance; however, given their single-site nature they are usually only amenable to reactions that involve single molecules. For processes that involve multiple molecules, improved catalytic properties could be achieved through the development of atomically dispersed catalysts with higher complexities. Here we report a catalyst that features two adjacent copper atoms, which we call an ‘atom-pair catalyst’, that work together to carry out the critical bimolecular step in CO2 reduction. The atom-pair catalyst features stable Cu10–Cu1x+ pair structures, with Cu1x+ adsorbing H2O and the neighbouring Cu10 adsorbing CO2, which thereby promotes CO2 activation. This results in a Faradaic efficiency for CO generation above 92%, with the competing hydrogen evolution reaction almost completely suppressed. Experimental characterization and density functional theory revealed that the adsorption configuration reduces the activation energy, which generates high selectivity, activity and stability under relatively low potentials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Structural characterizations of Cu(0.10%)-doped Pd10Te3 nanowires (Cu–APC).
Fig. 2: Catalytic performances of Cu–APC and other Pd10Te3 nanowire samples in CO2RR.
Fig. 3: Comparison between results of the XAFS spectroscopy and theoretical calculation with the depicted structures for Cu-doped Pd10Te3 nanowires.
Fig. 4: Free energy profiles for CO2 activation mode.

Data availability

Full data supporting the findings of this study are available within the article and its Supplementary Information, as well as from the corresponding author upon reasonable request.


  1. 1.

    Zhang, L., Zhao, Z. J. & Gong, J. L. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem. Int. Ed. 56, 11326–11353 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    Jensen, M. T. et al. Scalable carbon dioxide electroreduction coupled to carbonylation chemistry. Nat. Commun. 8, 489 (2017).

    Article  Google Scholar 

  3. 3.

    Li, H. et al. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nat. Nanotech. 13, 411–417 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    Gao, D. et al. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 137, 4288–4291 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    Sheng, W. et al. Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios. Energy Environ. Sci. 10, 1180–1185 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    Zhu, W. et al. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 135, 16833–16836 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    Mistry, H. et al. Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J. Am. Chem. Soc. 136, 16473–16476 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Cao, Z. et al. A molecular surface functionalization approach to tuning nanoparticle electrocatalysts for carbon dioxide reduction. J. Am. Chem. Soc. 138, 8120–8125 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Liu, S. et al. Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates. J. Am. Chem. Soc. 139, 2160–2163 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Lu, Q. et al. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun. 5, 3242 (2014).

    Article  Google Scholar 

  12. 12.

    Loiudice, A. et al. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew. Chem. Int. Ed. 55, 5789–5792 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    Hori, Y., Takahashi, R., Yoshinami, Y. & Murata, A. Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B 101, 7075–7081 (1997).

    CAS  Article  Google Scholar 

  15. 15.

    Hori, Y., Koga, O., Yamazaki, H. & Matsuo, T. Infrared spectroscopy of adsorbed CO and intermediate species in electrochemical reduction of CO2 to hydrocarbons on a Cu electrode. Electrochim. Acta 40, 2617–2622 (1995).

    CAS  Article  Google Scholar 

  16. 16.

    Kim, D., Kley, C. S., Li, Y. F. & Yang, P. D. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products. Proc. Natl Acad. Sci. USA 114, 10560–10565 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    Medina-Ramos, J., Pupillo, R. C., Keane, T. P., DiMeglio, J. L. & Rosenthal, J. Efficient conversion of CO2 to CO using tin and other inexpensive and easily prepared post-transition metal catalysts. J. Am. Chem. Soc. 137, 5021–5027 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Resasco, J. et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    Kim, D. et al. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc. 139, 8329–8336 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Ma, S. et al. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu–Pd catalysts with different mixing patterns. J. Am. Chem. Soc. 139, 47–50 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    Zhao, X., Luo, B., Long, R., Wang, C. & Xiong, Y. Composition-dependent activity of Cu–Pt alloy nanocubes for electrocatalytic CO2 reduction. J. Mater. Chem. A 3, 4134–4138 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Kortlever, R. et al. Palladium–gold catalyst for the electrochemical reduction of CO2 to C1–C5 hydrocarbons. Chem. Commun. 52, 10229–10232 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Bai, X. F. et al. Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd–Sn alloy. Angew. Chem. Int. Ed. 56, 12219–12223 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    He, J., Dettelbach, K. E., Salvatore, D. A., Li, T. & Berlinguette, C. P. High-throughput synthesis of mixed-metal electrocatalysts for CO2 reduction. Angew. Chem. Int. Ed. 56, 6068–6072 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Li, F., Chen, L., Knowles, G. P., MacFarlane, D. R. & Zhang, J. Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angew. Chem. Int. Ed. 56, 505–509 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    Kattel, S., Liu, P. & Chen, J. G. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J. Am. Chem. Soc. 139, 9739–9754 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    Chen, Y. & Kanan, M. W. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J. Am. Chem. Soc. 134, 1986–1989 (2012).

    CAS  Article  Google Scholar 

  28. 28.

    Li, Q. et al. Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure. J. Am. Chem. Soc. 139, 4290–4293 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Graciani, J. et al. Highly active copper–ceria and copper–ceria–titania catalysts for methanol synthesis from CO2. Science 345, 546–550 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    Xiao, H., Cheng, T., Goddard, W. A. & Sundararaman, R. Mechanistic explanation of the pH dependence and onset potentials for hydrocarbon products from electrochemical reduction of CO on Cu(111). J. Am. Chem. Soc. 138, 483–486 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    Xiao, H., Cheng, T. & Goddard, W. A. Atomistic mechanisms underlying selectivities in C1 and C2 products from electrochemical reduction of CO on Cu(111). J. Am. Chem. Soc. 139, 130–136 (2017).

    CAS  Article  Google Scholar 

  32. 32.

    Cheng, T., Xiao, H. & Goddard, W. A. Reaction mechanisms for the electrochemical reduction of CO2 to CO and formate on the Cu(100) surface at 298 K from quantum mechanics free energy calculations with explicit water. J. Am. Chem. Soc. 138, 13802–13805 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Xiao, H., Goddard, W. A., Cheng, T. & Liu, Y. Y. Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2. Proc. Natl Acad. Sci. USA 114, 6685–6688 (2017).

    CAS  Article  Google Scholar 

  34. 34.

    Gao, S. et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529, 68–71 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    De Luna, P. et al. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 1, 103–110 (2018).

    Article  Google Scholar 

  36. 36.

    Back, S., Lim, J., Kim, N. Y., Kim, Y. H. & Jung, Y. Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements. Chem. Sci. 8, 1090–1096 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    Liang, H. W. et al. Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew. Chem. Int. Ed. 51, 5101–5105 (2012).

    CAS  Article  Google Scholar 

  38. 38.

    Li, H. H. et al. Scalable bromide-triggered synthesis of Pd@Pt core–shell ultrathin nanowires with enhanced electrocatalytic performance toward oxygen reduction reaction. J. Am. Chem. Soc. 137, 7862–7868 (2015).

    CAS  Article  Google Scholar 

  39. 39.

    Long, R. et al. Isolation of Cu atoms in Pd lattice: forming highly selective sites for photocatalytic conversion of CO2 to CH4. J. Am. Chem. Soc. 139, 4486–4492 (2017).

    CAS  Article  Google Scholar 

  40. 40.

    Oyanagi, H. et al. Small copper clusters studied by X-ray absorption near-edge structure. J. Appl. Phys. 111, 4 (2012).

    Article  Google Scholar 

  41. 41.

    Weinberg, D. R. et al. Proton-coupled electron transfer. Chem. Rev. 112, 4016–4093 (2012).

    CAS  Article  Google Scholar 

  42. 42.

    Norskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23–J26 (2005).

    CAS  Article  Google Scholar 

  43. 43.

    Peterson, A. A. & Nørskov, J. K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3, 251–258 (2012).

    CAS  Article  Google Scholar 

  44. 44.

    Dunwell, M. et al. The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold. J. Am. Chem. Soc. 139, 3774–3783 (2017).

    CAS  Article  Google Scholar 

  45. 45.

    Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Norskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010).

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Key R&D Program of China (2017YFA0700101 and 2016YFA0202801), and the National Natural Science Foundation of China (21872076, 21573119, 21590792, 21890383 and 51403114). We thank the 1W1B station in the BSRF and beamline 12B2 (SPring-8), BL01C1 (TLS) of the NSRRC for the X-ray absorption spectroscopy measurements. B.X. and X.Y. acknowledge the support of the US Department of Energy under grant no. DE-SC0016537.

Author information




C.C. and J.J. conceived the project. J.J., W.-C.C. and Z.C. carried out the syntheses and structural characterizations. R.L. conducted the CO2 electrochemical reduction experiments. S.L., J.J., L.Z., S.-F.H. and H.M.C. provided the analyses of the XANES and EXAFS. B.X., Q.L. and X.Y. carried out the in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy experiment and provided the analyses. H.X. carried out computational investigation and provided theoretical analysis. C.Z. helped to write this manuscript. C.C. was responsible for the overall direction of the project. All the other authors participated in preparing the manuscript and contributed to the discussion.

Corresponding authors

Correspondence to Hai Xiao or Chen Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Characterization, Supplementary Theory, Supplementary Figures 1–15, Supplementary Tables 1–8

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiao, J., Lin, R., Liu, S. et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nature Chem 11, 222–228 (2019).

Download citation

Further reading


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing