Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The reductive C3 functionalization of pyridinium and quinolinium salts through iridium-catalysed interrupted transfer hydrogenation


Aromatic rings are ubiquitous in organic chemistry and form the basis of many commercial products. Despite the numerous routes available for the preparation of aromatic compounds, there remain few methods that allow their conversion into synthetically useful partially saturated derivatives and even fewer that allow new C–C bonds to be formed at the same time. Here we set out to address this problem and uncover a unique catalytic partial reduction reaction that forms partially saturated azaheterocycles from aromatic precursors. In this reaction, methanol and formaldehyde are used for the reductive functionalization of pyridines and quinolines using catalytic iridium; thus, inexpensive and renewable feedstocks are utilized in the formation of complex N-heterocycles. By harnessing the formation of a nucleophilic enamine intermediate, the C–C bond-forming process reverses the normal pattern of reactivity and allows access to the C3 position of the arene. Mechanistic investigations using D-labelling experiments reveal the source of hydride added to the ring and show the reversible nature of the iridium-hydride addition.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: State-of-the-art methods used to access substituted tetrahydropyridines.
Fig. 2: Deuterium labelling studies and proposed mechanism for the pyridinium salts.
Fig. 3: Deuterium labelling studies and proposed mechanism for the quinolinium salts.

Data availability

Supplementary information, chemical compound information and copies of spectra are available in the online version of this paper.


  1. 1.

    Baumann, M. & Baxendale, I. R. An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles. Beilstein J. Org. Chem. 9, 2265–2319 (2013).

    Article  Google Scholar 

  2. 2.

    Majumdar, K. C. & Chattopadhyay, S. K. Heterocycles in Natural Product Synthesis (Wiley-VCH, Weinheim, 2011).

  3. 3.

    Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    De Vries, J. G. & Elsevier, C. J. in Handbook of Homogeneous Hydrogenation Ch. 16 (Wiley-VCH, Weinheim, 2008).

  5. 5.

    Kӓllstrӧm, S. & Leino, R. Synthesis of pharmaceutically active compounds containing a disubstituted piperidine framework. Bioorg. Med. Chem. 16, 601–635 (2008).

    Article  Google Scholar 

  6. 6.

    Glorius, F., Spielkamp, N., Holle, S., Goddard, R. & Lehmann, C. W. Efficient asymmetric hydrogenation of pyridines. Angew. Chem. Int. Ed. 43, 2850–2852 (2004).

    CAS  Article  Google Scholar 

  7. 7.

    Renom-Carrasco, M. et al. Asymmetric hydrogenation of 3-substituted pyridinium salts. Chem. Eur. J. 22, 9528–9532 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    Wang, X.-B., Zeng, W. & Zhou, Y.-G. Iridium-catalysed asymmetric hydrogenation of pyridine derivatives, 7,8-dihydro-quinolin-5(6H)-ones. Tetrahedron Lett. 49, 4922–4924 (2008).

    CAS  Article  Google Scholar 

  9. 9.

    Tang, W.-J. et al. Highly enantioselective hydrogenation of quinoline and pyridine derivatives with iridium-(P-phos) catalyst. Adv. Synth. Catal. 352, 1055–1062 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    Ye, Z.-S. et al. Iridium-catalysed asymmetric hydrogenation of pyridinium salts. Angew. Chem. Int. Ed. 51, 10181–10184 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    Chang, M. et al. Asymmetric hydrogenation of pyridinium salts with an iridium phosphole catalyst. Angew. Chem. Int. Ed. 53, 12761–12764 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    Kita, Y., Iimuro, A., Hida, S. & Mashima, K. Iridium-catalysed asymmetric hydrogenation of pyridinium salts for constructing multiple stereogenic centres on piperidines. Chem. Lett. 43, 284–286 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Huang, W.-X. et al. Iridium-catalysed selective hydrogenation of 3-hydroxypyridinium salts: a facile synthesis of piperidin-3-ones. Org. Lett. 17, 1640–1643 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Rupeing, M. & Antonchick, A. P. Organocatalytic enantioselective reduction of pyridines. Angew. Chem. Int. Ed. 46, 4562–4565 (2007).

    Article  Google Scholar 

  15. 15.

    Taber, D. F. & Lambert, T. in Organic Synthesis Ch. 27–31 (Oxford Univ. Press, Oxford, 2015).

  16. 16.

    Wu, J., Tang, W., Pettman, A. & Xiao, J. Efficient and chemoselective reduction of pyridines to tetrahydropyridines and piperidines via rhodium-catalyzed transfer hydrogenation. Adv. Synth. Catal. 355, 35–40 (2013).

    CAS  Article  Google Scholar 

  17. 17.

    Talwar, D., Li, H. Y., Durham, E. & Xiao, J. A simple iridicycle catalyst for efficient transfer hydrogenation of N-heterocycles in water. Chem. Eur. J. 21, 5370–5379 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Comins, D. L., Joseph, S. P. & Goehring, R. R. Asymmetric synthesis of 2-alkyl(aryl)-2,3-dihydro-4-pyridones by addition of Grignard reagents to chiral 1-acyl-4-methoxypyridinium salts. J. Am. Chem. Soc. 116, 4719–4728 (1994).

    CAS  Article  Google Scholar 

  19. 19.

    Charette, A. B., Grenon, M., Lemire, A., Pourashraf, M. & Martel, J. Practical and highly regio- and stereoselective synthesis of 2-substituted dihydropyridines and piperidines: application to the synthesis of (–)-coniine. J. Am. Chem. Soc. 123, 11829–11830 (2001).

    CAS  Article  Google Scholar 

  20. 20.

    Fernández-Ibáñez, M. Á., Maciá, B., Pizzuti, M. G., Minnaard, A. J. & Feringa, B. L. Catalytic enantioselective addition of dialkylzinc reagents to N-acylpyridinium salts. Angew. Chem. Int. Ed. 48, 9339–9341 (2009).

    Article  Google Scholar 

  21. 21.

    Donohoe, T. J., Connolly, M. J. & Walton, L. Regioselective nucleophilic addition to pyridinium salts: a new route to substituted dihydropyridines. Org. Lett. 11, 5562–5565 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    Nadeau, C., Aly, S. & Belyk, K. Rhodium-catalyzed enantioselective addition of boronic acids to N-benzylnicotinate salts. J. Am. Chem. Soc. 133, 2878–2880 (2011).

    Article  Google Scholar 

  23. 23.

    Chau, S. T., Lutz, J. P., Wu, K. & Doyle, A. G. Nickel-catalyzed enantioselective arylation of pyridinium ions: harnessing an iminium ion activation mode. Angew. Chem. Int. Ed. 52, 9153–9156 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    Lutz, J. P., Chau, S. T. & Doyle, A. G. Nickel-catalyzed enantioselective arylation of pyridine. Chem. Sci. 7, 4105–4109 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Moran, J., Preetz, A., Mesch, R. A. & Krische, M. J. Iridium-catalysed direct C–C coupling of methanol and allenes. Nat. Chem. 3, 287–290 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    Garza, V. J. & Krische, M. J. Hydroxymethylation beyond carbonylation: enantioselective iridium-catalyzed reductive coupling of formaldehyde with allylic acetates via enantiotopic π-facial discrimination. J. Am. Chem. Soc. 138, 3655–3658 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Elangovan, S. et al. Efficient and selective N-alkylation of amine with alcohols catalysed by manganese pincer complexes. Nat. Commun. 7, 12641 (2016).

    Article  Google Scholar 

  28. 28.

    Olah, G. A. Towards oil independence through renewable methanol chemistry. Angew. Chem. Int. Ed. 52, 104–107 (2013).

    CAS  Article  Google Scholar 

  29. 29.

    Sam, B., Breit, B. & Krische, M. J. Paraformaldehyde and methanol a C1 feedstocks in metal catalysed C–C couplings of π-unsaturated reactants: beyond hydroformylation. Angew. Chem. Int. Ed. 54, 3267–3274 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Natte, K., Neumann, H., Beller, M. & Jagadeesh, R. V. Transition-metal-catalyzed utilization of methanol as a C1 source in organic synthesis. Angew. Chem. Int. Ed. 56, 6384–6394 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    Hamid, M. H. S. A., Slatford, P. A. & Williams, J. M. J. Borrowing hydrogen in the activation of alcohols. Adv. Synth. Catal. 349, 1555–1575 (2007).

    CAS  Article  Google Scholar 

  32. 32.

    Chan, L. K. M., Poole, D. L., Shen, D., Healy, M. P. & Donohoe, T. J. Rhodium-catalyzed ketone methylation using methanol under mild conditions: formation of alpha-branched products. Angew. Chem. Int. Ed. 53, 761–765 (2014).

    CAS  Article  Google Scholar 

  33. 33.

    Shen, D. et al. Hydrogen borrowing and interrupted hydrogen borrowing reactions of ketones and methanol, catalysed by iridium. Angew. Chem. Int. Ed. 54, 1642–1645 (2015).

    CAS  Article  Google Scholar 

  34. 34.

    Wang., S.-G. & You, S.-L. Hydrogenative dearomatization of pyridine and an asymmetric aza-Friedel–Crafts alkylation sequence. Angew. Chem. Int. Ed. 53, 2194–2197 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    Sundararaju, B., Achard, M., Sharma, G. V. M. & Bruneau, C. sp 3 C–H bond activation with ruthenium(ii) catalysts and C(3)-alkylation of cyclic amines. J. Am. Chem. Soc. 133, 10340–10343 (2011).

    CAS  Article  Google Scholar 

  36. 36.

    Tan, Z., Jiang, H. & Zhang, M. Ruthenium-catalyzed dehydrogenative β-benzylation of 1,2,3,4-tetrahydroquinolines with aryl aldehydes: access to functionalized quinolines. Org. Lett. 18, 3177–3177 (2016).

    Google Scholar 

  37. 37.

    Wu, J., Wang, C., Tang, W., Pettman, A. & Xiao, J. The remarkable effect of a simple ion: iodide-promoted transfer hydrogenation of heteroaromatics. Chem. Eur. J. 18, 9525–9529 (2012).

    CAS  Article  Google Scholar 

  38. 38.

    Wu, J., Talwar, D., Johnston, S., Yan, M. & Xiao, J. Acceptorless dehydrogenation of nitrogen heterocycles with a versatile iridium catalyst. Angew. Chem. Int. Ed. 52, 6983–6987 (2013).

    CAS  Article  Google Scholar 

Download references


The EPSRC (grant no. EP/L023121/1 and a DTP award) and Eli-Lilly provided financial support for this project.

Author information




A.G. and T.J.D. conceived and designed the study. A.G., H.B.H., P.J.S. and H.K.P. performed the experiments and A.G., H.B.H., P.J.S., H.K.P., P.J.L.-S. and T.J.D. analysed the data for the compounds. A.G., H.B.H. and T.J.D. co-wrote the paper.

Corresponding author

Correspondence to Timothy J. Donohoe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Full synthetic protocols for the synthesis of all starting materials and products, full characterization data and spectra for all novel starting materials and products, additional screening information and additional mechanistic experiments

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grozavu, A., Hepburn, H.B., Smith, P.J. et al. The reductive C3 functionalization of pyridinium and quinolinium salts through iridium-catalysed interrupted transfer hydrogenation. Nature Chem 11, 242–247 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing