Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hierarchical organization of perylene bisimides and polyoxometalates for photo-assisted water oxidation

A Publisher Correction to this article was published on 13 March 2019

This article has been updated

Abstract

The oxygen in Earth’s atmosphere is there primarily because of water oxidation performed by photosynthetic organisms using solar light and one specialized protein complex, photosystem II (PSII). High-resolution imaging of the PSII ‘core’ complex shows the ideal co-localization of multi-chromophore light-harvesting antennas with the functional reaction centre. Man-made systems are still far from replicating the complexity of PSII, as the majority of PSII mimetics have been limited to photocatalytic dyads based on a 1:1 ratio of a light absorber, generally a Ru–polypyridine complex, with a water oxidation catalyst. Here we report the self-assembly of multi-perylene-bisimide chromophores (PBI) shaped to function by interaction with a polyoxometalate water-oxidation catalyst (Ru4POM). The resulting [PBI]5Ru4POM complex shows a robust amphiphilic structure and dynamic aggregation into large two-dimensional paracrystalline domains, a redshifted light-harvesting efficiency of >40% and favourable exciton accumulation, with a peak quantum efficiency using ‘green’ photons (λ > 500 nm). The modularity of the building blocks and the simplicity of the non-covalent chemistry offer opportunities for innovation in artificial photosynthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of the {[PBI]5Ru4POM}n photosynthetic assembly.
Fig. 2: Hierarchical organization of {[PBI]5Ru4POM}n photosynthetic aggregates.
Fig. 3: Femtosecond transient absorption dynamics of oxygenic {[PBI]5Ru4POM}n.
Fig. 4: Characterization of nanoWO3|{[PBI]5Ru4POM}n photoanodes.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information files. All other relevant source data are available from the corresponding authors upon request.

Change history

  • 13 March 2019

    In the version of this Article originally published, in the graphical abstract the y-axis units of the plot read ‘mA cm–2’, but should have read ‘μA cm–2’. Additionally, an erroneous gap appeared in the red trace. These errors have now been corrected.

References

  1. Ort, D. R. et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc. Natl Acad. Sci. USA 112, 8529–8536 (2015).

    Article  CAS  Google Scholar 

  2. Blankenship, R. E. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805–809 (2011).

    Article  CAS  Google Scholar 

  3. Jia, J. et al. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat. Commun. 7, 13237 (2016).

    Article  CAS  Google Scholar 

  4. Barber, J. Photosynthetic energy conversion: natural and artificial. Chem. Soc. Rev. 38, 185–196 (2009).

    Article  CAS  Google Scholar 

  5. Emerson, R. & Arnold, W. The photochemical reaction in photosynthesis. J. Gen. Physiol. 16, 191–205 (1932).

    Article  CAS  Google Scholar 

  6. Park, R. B. & Biggins, J. Quantasome: size and composition. Science 144, 1009–1011 (1964).

    Article  CAS  Google Scholar 

  7. Kundu, S. & Patra, A. Nanoscale strategies for light harvesting. Chem. Rev. 117, 712–757 (2017).

    Article  CAS  Google Scholar 

  8. Yamamoto, Y. et al. Efficient light harvesting via sequential two-step energy accumulation using a Ru–Re5 multinuclear complex incorporated into periodic mesoporous organosilica. Chem. Sci. 5, 639–648 (2014).

    Article  CAS  Google Scholar 

  9. Croce, R. & Xu, P. A photo shoot of plant photosystem II. Nature 534, 42–43 (2016).

    Article  CAS  Google Scholar 

  10. Yano, J. & Yachandra, V. Mn4Ca cluster in photosynthesis: where and how water is oxidized to dioxygen. Chem. Rev. 114, 4175–4205 (2014).

    Article  CAS  Google Scholar 

  11. Kärkäs, M. D., Johnston, E. V., Verho, O. & Akermark, B. Artificial photosynthesis: from nanosecond electron transfer to catalytic water oxidation. Acc. Chem. Res. 47, 100–111 (2014).

    Article  Google Scholar 

  12. Kärkäs, M. D., Verho, O., Johnston, E. V. & Åkermark, B. Artificial photosynthesis: molecular systems for catalytic water oxidation. Chem. Rev. 114, 11863–12001 (2014).

    Article  Google Scholar 

  13. Berardi, S. et al. Molecular artificial photosynthesis. Chem. Soc. Rev. 43, 7501–7519 (2014).

    Article  CAS  Google Scholar 

  14. Blakemore, J. D., Crabtree, R. H. & Brudvig, G. W. Molecular catalysts for water oxidation. Chem. Rev. 115, 12974–13005 (2015).

    Article  CAS  Google Scholar 

  15. Young, K. J. et al. Light-driven water oxidation for solar fuels. Coord. Chem. Rev. 256, 2503–2520 (2012).

    Article  CAS  Google Scholar 

  16. Sartorel, A., Bonchio, M., Campagna, S. & Scandola, F. Tetrametallic molecular catalysts for photochemical water oxidation. Chem. Soc. Rev. 42, 2262–2280 (2013).

    Article  CAS  Google Scholar 

  17. Sartorel, A., Carraro, M., Toma, F. M., Prato, M. & Bonchio, M. Shaping the beating heart of artificial photosynthesis: oxygenic metal oxide nano-clusters. Energy Environ. Sci. 5, 5592 (2012).

    Article  CAS  Google Scholar 

  18. Han, Q. & Ding, Y. Recent advances in the field of light-driven water oxidation catalyzed by transition-metal substituted polyoxometalates. Dalton Trans. 47, 8180–8188 (2018).

    Article  CAS  Google Scholar 

  19. Gust, D., Moore, T. A. & Moore, A. L. Solar fuels via artificial photosynthesis. Acc. Chem. Res. 42, 1890–1898 (2009).

    Article  CAS  Google Scholar 

  20. Gust, D. Supramolecular photochemistry applied to artificial photosynthesis and molecular logic devices. Faraday Discuss. 185, 9–35 (2015).

    Article  CAS  Google Scholar 

  21. Fukuzumi, S., Ohkubo, K. & Suenobu, T. Long-lived charge separation and applications in artificial photosynthesis. Acc. Chem. Res. 47, 1455–1464 (2014).

    Article  CAS  Google Scholar 

  22. Wasielewski, M. R. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. Acc. Chem. Res. 42, 1910–1921 (2009).

    Article  CAS  Google Scholar 

  23. Cook, R. E. et al. Excimer formation and symmetry-breaking charge transfer in cofacial perylene dimers. J. Phys. Chem. A 121, 1607–1615 (2017).

    Article  CAS  Google Scholar 

  24. Wu, Y. et al. Ultrafast photoinduced symmetry-breaking charge separation and electron sharing in perylenediimide molecular triangles. J. Am. Chem. Soc. 137, 13236–13239 (2015).

    Article  CAS  Google Scholar 

  25. Würthner, F. et al. Perylene bisimide dye assemblies as archetype functional supramolecular materials. Chem. Rev. 116, 962–1052 (2015).

    Article  Google Scholar 

  26. Chen, S., Slattum, P., Wang, C. & Zang, L. Self-assembly of perylene imide molecules into 1D nanostructures: methods, morphologies, and applications. Chem. Rev. 115, 11967–11998 (2015).

    Article  CAS  Google Scholar 

  27. Weingarten, A. S. et al. Self-assembling hydrogel scaffolds for photocatalytic hydrogen production. Nat. Chem. 6, 964–970 (2014).

    Article  CAS  Google Scholar 

  28. Guan, Y., Zakrevskyy, Y., Stumpe, J., Antonietti, M. & Faul, C. F. J. Perylenediimide-surfactant complexes: thermotropic liquid-crystalline materials via ionic self-assembly. Chem. Commun. 2003, 894–895 (2003).

    Article  Google Scholar 

  29. Guan, Y., Yu, S.-H., Antonietti, M., Böttcher, C. & Faul, C. F. J. Synthesis of supramolecular polymers by ionic self-assembly of oppositely charged dyes. Chem. Eur. J. 11, 1305–1311 (2005).

    Article  CAS  Google Scholar 

  30. Supur, M. & Fukuzumi, S. Photodriven electron transport within the columnar perylenediimide nanostructures self-assembled with sulfonated porphyrins in water. J. Phys. Chem. C 116, 23274–23282 (2012).

    Article  CAS  Google Scholar 

  31. Supur, M. & Fukuzumi, S. Tuning the photodriven electron transport within the columnar perylenediimide stacks by changing the π-extent of the electron donors. Phys. Chem. Chem. Phys. 15, 2539 (2013).

    Article  CAS  Google Scholar 

  32. Sartorel, A. et al. Water oxidation at a tetraruthenate core stabilized by polyoxometalate ligands: experimental and computational evidence to trace the competent intermediates. J. Am. Chem. Soc. 131, 16051–16053 (2009).

    Article  CAS  Google Scholar 

  33. Toma, F. M. et al. Efficient water oxidation at carbon nanotube–polyoxometalate electrocatalytic interfaces. Nat. Chem. 2, 826–831 (2010).

    Article  CAS  Google Scholar 

  34. Quintana, M. et al. Knitting the catalytic pattern of artificial photosynthesis to a hybrid graphene nanotexture. ACS Nano 7, 811–817 (2013).

    Article  CAS  Google Scholar 

  35. Geletii, Y. V. et al. Structural, physicochemical, and reactivity properties of an all-inorganic, highly active tetraruthenium homogeneous catalyst for water oxidation. J. Am. Chem. Soc. 131, 17360–17370 (2009).

    Article  CAS  Google Scholar 

  36. Liu, Y. et al. Voltammetric determination of the reversible potentials for [{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]10− over the pH range of 2−12: electrolyte dependence and implications for water oxidation catalysis. Inorg. Chem. 4, 11986–11996 (2013).

    Article  Google Scholar 

  37. Guo, S. X. et al. Graphene-supported [{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]10− for highly efficient electrocatalytic water oxidation. Energy Environ. Sci. 6, 2654–2663 (2013).

    Article  CAS  Google Scholar 

  38. Orlandi, M. et al. Ruthenium polyoxometalate water splitting catalyst: very fast hole scavenging from photogenerated oxidants. Chem. Commun. 46, 3152–3154 (2010).

    Article  CAS  Google Scholar 

  39. Puntoriero, F. et al. Photo-induced water oxidation with tetra-nuclear ruthenium sensitizer and catalyst: a unique 4 × 4 ruthenium interplay triggering high efficiency with low-energy visible light. Chem. Commun. 46, 4725–4727 (2010).

    Article  CAS  Google Scholar 

  40. Natali, M. et al. Working the other way around: photocatalytic water oxidation triggered by reductive quenching of the photoexcited chromophore. J. Phys. Chem. C 119, 2371–2379 (2015).

    Article  CAS  Google Scholar 

  41. Vagnini, M. T. et al. Ultrafast photodriven intramolecular electron transfer from an iridium-based water-oxidation catalyst to perylene diimide derivatives. Proc. Natl Acad. Sci. USA 109, 15651–15656 (2012).

    Article  CAS  Google Scholar 

  42. Piccinin, S. et al. Water oxidation surface mechanisms replicated by a totally inorganic tetraruthenium-oxo molecular complex. Proc. Natl Acad. Sci. USA 110, 4917–4922 (2013).

    Article  CAS  Google Scholar 

  43. Scheuring, S. & Sturgis, J. N. Chromatic adaptation of photosynthetic membranes. Science 309, 484–487 (2005).

    Article  CAS  Google Scholar 

  44. Nisar, A. & Wang, X. Surfactant-encapsulated polyoxometalate building blocks: controlled assembly and their catalytic properties. Dalton Trans. 41, 9832 (2012).

    Article  CAS  Google Scholar 

  45. Seddon, J. M. Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. Biochim. Biophys. Acta 1031, 1–69 (1990).

    Article  CAS  Google Scholar 

  46. Turner, D. C. & Gruner, S. M. X-ray diffraction reconstruction of the inverted hexagonal (HII) phase in lipid–water systems. Biochemistry 31, 1340–1355 (1992).

    Article  CAS  Google Scholar 

  47. Parent, A. R., Crabtree, R. H. & Brudvig, G. W. Comparison of primary oxidants for water-oxidation catalysis. Chem. Soc. Rev. 42, 2247–2252 (2013).

    Article  CAS  Google Scholar 

  48. Lai, Y.-H., Kato, M., Mersch, D. & Reisner, E. Comparison of photoelectrochemical water oxidation activity of a synthetic photocatalyst system with photosystem II. Faraday Discuss. 176, 199–211 (2014).

    Article  CAS  Google Scholar 

  49. Swierk, J. R. & Mallouk, T. E. Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells. Chem. Soc. Rev. 42, 2357–2387 (2013).

    Article  CAS  Google Scholar 

  50. Kim, J. Y. et al. Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting. Sci. Rep. 3, 2681 (2013).

    Article  Google Scholar 

  51. Kim, T. W. & Choi, K.-S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014).

    Article  CAS  Google Scholar 

  52. Hegner, F. et al. Cobalt hexacyanoferrate on BiVO4 photoanodes for robust water splitting. ACS Appl. Mater. Interfaces 9, 37671–37681 (2017).

    Article  CAS  Google Scholar 

  53. Scott, M. J., Nelson, J. J., Caramori, S., Bignozzi, C. A. & Elliott, C. M. cis-dichloro-bis(4,4′-dicarboxy-2,2-bipyridine)osmium(ii)-modified optically transparent electrodes: application as cathodes in stacked dye-sensitized solar cells. Inorg. Chem. 46, 10071–10078 (2007).

    Article  CAS  Google Scholar 

  54. Hill, J. C. & Choi, K. S. Effect of electrolytes on the selectivity and stability of n-type WO3 photoelectrodes for use in solar water oxidation. J. Phys. Chem. C 116, 7612–7620 (2012).

    Article  CAS  Google Scholar 

  55. Ronconi, F. et al. Modification of nanocrystalline WO3 with a dicationic perylene bisimide: applications to molecular level solar water splitting. J. Am. Chem. Soc. 137, 4630–4633 (2015).

    Article  CAS  Google Scholar 

  56. Fielden, J. et al. Water splitting with polyoxometalate-treated photoanodes: enhancing performance through sensitizer design. Chem. Sci. 6, 5531–5543 (2015).

    Article  CAS  Google Scholar 

  57. Natali, M. et al. Photo-assisted water oxidation by high-nuclearity cobalt-oxo cores: tracing the catalyst fate during oxygen evolution turnover. Green Chem. 19, 2416–2426 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Italian Ministero dell’Istruzione, Università e Ricerca (FIRB RBAP11C58Y, PRIN-2010N3T9M4), the Universities of Padova and Trieste, INSTM, and the Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 310651 (SACS project). Beamtime obtained at the facilities ELETTRA- Sincrotrone Trieste S.C.p.A. and CERIC-ERIC consortium is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Z.S., E.P. and F.R. carried out the synthesis and characterization experiments. M.Burian and H.A. conducted the WAXS and SAXS structural investigations. N.M. isolated and characterized the hexagonal crystalline aggregates. N.M. and N.D. conducted the X-ray diffraction analysis. K.D. and D.M.G. designed and analysed the fsTA studies. G.A.V. and G.L. optimized the oxygenic activity and photocurrent performance. S.B., S.C. and C.A.B. conducted the photoelectrochemical cell experiments. A.S. analysed the solution and photoelectrochemical cell results. M.Bonchio and M.P. designed the experiments and wrote the paper.

Corresponding authors

Correspondence to Marcella Bonchio or Maurizio Prato.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Materials and Methods, Supplementary Figs 1–18, Supplementary Tables 1 and 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonchio, M., Syrgiannis, Z., Burian, M. et al. Hierarchical organization of perylene bisimides and polyoxometalates for photo-assisted water oxidation. Nature Chem 11, 146–153 (2019). https://doi.org/10.1038/s41557-018-0172-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0172-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing