Highly responsive nature of porous coordination polymer surfaces imaged by in situ atomic force microscopy


The ability of porous coordination polymers to undergo reversible structural transformations in response to the presence of guest molecules has been intensively investigated for applications such as molecular separation, storage, sensing and signalling processes. Here we report on the direct observation of the highly guest-responsive nature of the surface of a single-crystalline porous coordination polymer, which consists of paddlewheel zinc clusters and two types of ligand, by in situ liquid-phase atomic force microscopy. Observations were carried out in solution at constant temperature (28 °C) by high-speed atomic force microscopy with lattice resolution. A sharp and reversible response to the presence or absence of biphenyl guest molecules was observed, under conditions that can scarcely induce the transformation of the bulk crystal. Additionally, by modulating the surface coordination equilibrium, layer-by-layer delamination events were captured in real time at every ~13 s per frame.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Chemical structure and in situ AFM image of PCP 1.
Fig. 2: Experimental set-up for in situ AFM imaging.
Fig. 3: Lattice-resolution image of the {001} facet of PCP 1 at the liquid–solid interface.
Fig. 4: Guest-induced lattice deformation tracked by in situ AFM imaging.
Fig. 5: Layer-by-layer delamination process captured in situ at the lattice scale.
Fig. 6: Plausible mechanism of <110> directional delamination.

Data availability

Crystallographic data for PCP 1 at different temperatures have been deposited at the Cambridge Crystallographic Data Centre, under deposition nos. CCDC 1864180 (10 °C), 1864181 (20 °C) and 1864182 (28 °C). Copies of the data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif. All other data supporting the findings of this study are available within the Article and its Supplementary Information, or from the corresponding author upon reasonable request.


  1. 1.

    Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    CAS  Article  Google Scholar 

  2. 2.

    Yaghi, O. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    CAS  Article  Google Scholar 

  3. 3.

    Li, J.-R., Sculley, J. & Zhou, H.-C. Metal–organic frameworks for separations. Chem. Rev. 112, 869–932 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    Van de Voorde, B., Bueken, B., Denayer, J. & De Vos, D. Adsorptive separation on metal–organic frameworks in the liquid phase. Chem. Soc. Rev. 43, 5766–5788 2014).

    Article  Google Scholar 

  5. 5.

    Sato, H. et al. Self-accelerating CO sorption in a soft nanoporous crystal. Science 343, 167–170 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    Cadiau, A., Adil, K., Bhatt, P. M., Belmabkhout, Y. & Eddaoudi, M. A metal–organic framework-based splitter for separating propylene from propane. Science 353, 137–140 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    He, Y., Zhou, W., Qian, G. & Chen, B. Methane storage in metal–organic frameworks. Chem. Soc. Rev. 43, 5657–5678 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    Mason, J. A. et al. Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 527, 357–361 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Kitagawa, S. Porous materials and the age of gas. Angew. Chem. Int. Ed. 54, 10686–10687 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Della Rocca, J., Liu, D. & Lin, W. Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res. 44, 957–968 (2011).

    Article  Google Scholar 

  11. 11.

    Diring, S. et al. Localized cell stimulation by nitric oxide using a photoactive porous coordination polymer platform. Nat. Commun. 4, 2684 (2013).

    Article  Google Scholar 

  12. 12.

    Jones, C. L., Tansell, A. J. & Easun, T. L. The lighter side of MOFs: structurally photoresponsive metal–organic frameworks. J. Mater. Chem. A 4, 6714–6723 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    Castellanos, S., Kapteijn, F. & Gascon, J. Photoswitchable metal organic frameworks: turn on the lights and close the windows. CrystEngComm 18, 4006–4012 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    Wang, Z. et al. Tunable molecular separation by nanoporous membranes. Nat. Commun. 7, 13872 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Zheng, Y. et al. Flexible interlocked porous frameworks allow quantitative photoisomerization in a crystalline solid. Nat. Commun. 8, 100 (2017).

    Article  Google Scholar 

  16. 16.

    Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nat. Chem. 1, 695–704 (2009).

    CAS  Article  Google Scholar 

  17. 17.

    Férey, G. & Serre, C. Large breathing effects in three-dimensional porous hybrid matter: fact, analyses, rules and consequences. Chem. Soc. Rev. 38, 1380–1399 (2009).

    Article  Google Scholar 

  18. 18.

    Schneemann, A. et al. Flexible metal–organic frameworks. Chem. Soc. Rev. 43, 6062–6096 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    Coudert, F.-X. Responsive metal–organic frameworks and framework materials: under pressure, taking the heat, in the spotlight, with friends. Chem. Mater. 27, 1905–1916 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Carrington, E. J. et al. Solvent-switchable continuous-breathing behaviour in a diamondoid metal–organic framework and its influence on CO2 versus CH4 selectivity. Nat. Chem. 9, 882–889 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    Tanaka, D. et al. Kinetic gate-opening process in a flexible porous coordination polymer. Angew. Chem. Int. Ed. 47, 3914–3918 (2008).

    CAS  Article  Google Scholar 

  22. 22.

    Zhou, H.-L. et al. Direct visualization of a guest-triggered crystal deformation based on a flexible ultramicroporous framework. Nat. Commun. 4, 2534 (2013).

    Article  Google Scholar 

  23. 23.

    Zhang, J.-P., Liao, P.-Q., Zhou, H.-L., Lin, R.-B. & Chen, X.-M. Single-crystal X-ray diffraction studies on structural transformations of porous coordination polymers. Chem. Soc. Rev. 43, 5789–5814 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    Kubota, R., Tashiro, S., Shiro, M. & Shionoya, M. In situ X-ray snapshot analysis of transient molecular adsorption in a crystalline channel. Nat. Chem. 6, 913–918 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    Kondo, M. et al. Trapping of a spatial transient state during the framework transformation of a porous coordination polymer. J. Am. Chem. Soc. 136, 4938–4944 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    Umemura, A. et al. Morphology design of porous coordination polymer crystals by coordination modulation. J. Am. Chem. Soc. 133, 15506–15513 (2011).

    CAS  Article  Google Scholar 

  27. 27.

    Zacher, D., Schmid, R., Wöll, C. & Fischer, R. A. Surface chemistry of metal–organic frameworks at the liquid–solid interface. Angew. Chem. Int. Ed. 50, 176–199 (2010).

    Article  Google Scholar 

  28. 28.

    Zacher, D., Shekhah, O., Wöll, C. & Fischer, R. A. Thin films of metal–organic frameworks. Chem. Soc. Rev. 38, 1418–1429 (2009).

    CAS  Article  Google Scholar 

  29. 29.

    McGuire, C. V. & Forgan, R. S. The surface chemistry of metal–organic frameworks. Chem. Commun. 51, 5199–5217 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Sakamoto, R. et al. The coordination nanosheet (CONASH). Coord. Chem. Rev. 320-321, 118–128 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    Sakata, Y. et al. Shape-memory nanopores induced in coordination frameworks by crystal downsizing. Science 339, 193–196 (2013).

    CAS  Article  Google Scholar 

  32. 32.

    Sakaida, S. et al. Crystalline coordination framework endowed with dynamic gate-opening behaviour by being downsized to a thin film. Nat. Chem. 8, 377–383 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Deng, H. et al. Direction-specific interactions control crystal growth by oriented attachment. Science 336, 1018–1023 (2012).

    CAS  Article  Google Scholar 

  34. 34.

    Zhu, Y. et al. Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy. Nat. Mater. 16, 532–536 (2017).

    CAS  Article  Google Scholar 

  35. 35.

    Szelagowska-Kunstman, K. et al. Surface structure of metal–organic framework grown on self-assembled monolayers revealed by high-resolution atomic force microscopy. J. Am. Chem. Soc. 130, 14446–14447 (2008).

    CAS  Article  Google Scholar 

  36. 36.

    Shöâeè, M., Anderson, M. W. & Attfield, M. P. Crystal growth of the nanoporous metal–organic framework HKUST-1 revealed by in situ atomic force microscopy. Angew. Chem. Int. Ed. 47, 8525–8528 (2008).

    Article  Google Scholar 

  37. 37.

    Shekhah, O., Wang, H., Zacher, D., Fischer, R. A. & Wöll, C. Growth mechanism of metal–organic frameworks: insights into the nucleation by employing a step-by-step route. Angew. Chem. Int. Ed. 48, 5038–5041 (2009).

    CAS  Article  Google Scholar 

  38. 38.

    Chun, H., Dybtsev, D. N., Kim, H. & Kim, K. Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials. Chem. Eur. J. 11, 3521–3529 (2005).

    CAS  Article  Google Scholar 

  39. 39.

    Weyna, D. R., Shattock, T., Vishweshwar, P. & Zaworotko, M. J. Synthesis and structural characterization of cocrystals and pharmaceutical cocrystals: mechanochemistry vs slow evaporation from solution. Cryst. Growth Des. 9, 1106–1123 (2009).

    CAS  Article  Google Scholar 

  40. 40.

    Ashton, L. A., Bullock, J. I. & Simpson, P. W. G. Effect of temperature on the protonation constants of some aromatic, heterocyclic nitrogen bases and the anion of 8-hydroxyquinoline. J. Chem. Soc. Faraday Trans. 1 78, 1961–1970 (1982).

    CAS  Article  Google Scholar 

  41. 41.

    Foster, J. A., Henke, S., Schneemann, A., Fischer, R. A. & Cheetham, A. K. Liquid exfoliation of alkyl-ether functionalised layered metal-organic frameworks to nanosheets. Chem. Commun. 52, 10474–10477 (2016).

    CAS  Article  Google Scholar 

  42. 42.

    Ding, Y. et al. Controlled intercalation and chemical exfoliation of layered metal–organic frameworks using a chemically labile intercalating agent. J. Am. Chem. Soc. 139, 9136–9139 (2017).

    CAS  Article  Google Scholar 

  43. 43.

    Boultif, A. & Louer, D. Powder pattern indexing with the dichotomy method. J. Appl. Cryst. 37, 724–731 (2004).

    CAS  Article  Google Scholar 

  44. 44.

    Altomare, A. et al. EXPO2013: a kit of tools for phasing crystal structures from powder data. J. Appl. Cryst. 46, 1231–1235 (2013).

    CAS  Article  Google Scholar 

  45. 45.

    Nečas, D. & Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys. 10, 181–188 (2012).

    Google Scholar 

Download references


This work was supported by a KAKENHI Grant-in-Aid for Specially Promoted Research (JP25000007) and Scientific Research (S) (JP18H05262) from the Japan Society of the Promotion of Science (JSPS). N.H. acknowledges JSPS for KAKENHI Grants-in-Aid for Young Scientists (B) ( JP16K17959) and Scientific Research (B) (JP18H02072), and the Regional Innovation Strategy Support Program (Next-generation Energy System Creation Strategy for Kyoto) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. S.Ki. acknowledges the ACCEL programme (JPMJAC1302) of JST for financial support. This work was also supported by a Grant for Basic Science Research Projects from The Sumitomo Foundation. H. Sato (The University of Tokyo) and N. Shimanaka (Kyoto University) are thanked for useful discussions about the experiments and technical single-crystal X-ray analysis support, respectively.

Author information




N.H. and S.Ki. conceived this study. N.H. and A.T. designed the experiments. N.H. and A.T. performed the material synthesis, AFM imaging and data analysis. N.H. and S.Ki. supervised the research. All authors interpreted the results, and N.H., S.Ku. R.M. and S.Ki co-wrote the manuscript with input from all the authors.

Corresponding authors

Correspondence to Nobuhiko Hosono or Susumu Kitagawa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Materials; Supplementary Scheme 1 and Figures 1–19; X-ray diffraction analysis; Supplementary Table 1; Supplementary References 1–7.

Crystallographic data

Structure-factor file for PCP 1 at 10 °C; CCDC reference: 1864180

Crystallographic data

Structure-factor file for compound PCP 1 at 10 °C; CCDC reference: 1864180

Crystallographic data

Structure-factor file for compound PCP 1 at 20 °C; CCDC reference: 1864181

Crystallographic data

Structure-factor file for compound PCP 1 at 20 °C; CCDC reference: 1864181

Crystallographic data

Structure-factor file for compound PCP 1 at 28 °C; CCDC reference: 1864182

Crystallographic data

Structure-factor file for compound PCP 1 at 28 °C; CCDC reference: 1864182

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hosono, N., Terashima, A., Kusaka, S. et al. Highly responsive nature of porous coordination polymer surfaces imaged by in situ atomic force microscopy. Nature Chem 11, 109–116 (2019). https://doi.org/10.1038/s41557-018-0170-0

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing