Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy–O2 batteries


Rechargeable aprotic alkali metal (Li or Na)–O2 batteries are the subject of great interest because of their high theoretical specific energy. However, the growth of dendrites and cracks at the Li or Na anode, as well as their corrosive oxidation lead to poor cycling stability and safety issues. Understanding the mechanism and improving Li/Na-ion plating and stripping electrochemistry are therefore essential to realizing their technological potential. Here, we report how the use of a Li-Na alloy anode and an electrolyte additive realizes an aprotic bimetal Li-Na alloy–O2 battery with improved cycling stability. Electrochemical investigations show that stripping and plating of Li and Na and the robust and flexible passivation film formed in situ (by 1,3-dioxolane additive reacting with the Li-Na alloy) suppress dendrite and buffer alloy anode volume expansion and thus prevent cracking, avoiding electrolyte consumption and ensuring high electron transport efficiency and continued electrochemical reactions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Illustration of dendrite and crack suppression.
Fig. 2: Characterization of the Li-Na alloy.
Fig. 3: Oxidation and corrosion resistance as well as metal electrode morphology.
Fig. 4: Electrochemical performance for symmetric batteries.
Fig. 5: Electrochemical characterization for metal–O2 batteries.

Data availability

The authors declare that all the data supporting the findings of this study are available within the paper and its Supplementary Information.


  1. 1.

    Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J. M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

    CAS  Article  Google Scholar 

  2. 2.

    Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).

    CAS  Article  Google Scholar 

  3. 3.

    Li, W. et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436–7444 (2015).

    Article  Google Scholar 

  4. 4.

    Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362–6371 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    Wagner, F. T., Lakshmanan, B. & Mathias, M. F. Electrochemistry and the future of the automobile. J. Phys. Chem. Lett. 1, 2204–2219 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    Aetukuri, N. B. et al. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries. Nat. Chem. 7, 50–56 (2014).

    Article  Google Scholar 

  7. 7.

    Kundu, D., Talaie, E., Duffort, V. & Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem. Int. Ed. 54, 3431–3448 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Zu, C. X. & Li, H. Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 4, 2614–2624 (2011).

    CAS  Article  Google Scholar 

  9. 9.

    Tikekar, M. D., Choudhury, S., Tu, Z. & Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 16114–16121 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Choudhury, S. et al. Designer interphases for the lithium-oxygen electrochemical cell. Sci. Adv. 3, 1602809 (2017).

    Article  Google Scholar 

  11. 11.

    Wang, H., Lin, D., Liu, Y., Li, Y. & Cui, Y. Ultrahigh-current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF3 framework. Sci. Adv. 3, 701301 (2017).

    Google Scholar 

  12. 12.

    Liang, X. et al. A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy 2, 17119–17126 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Xie., J. et al. Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode. Sci. Adv. 3, 3170–3180 (2017).

    Article  Google Scholar 

  14. 14.

    Zhao, J. et al. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nat. Nanotech. 12, 993–999 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    Tu, Z. et al. Fast ion transport at solid–solid interfaces in hybrid battery anodes. Nat. Energy 3, 310–316 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    Zuo, T. T. et al. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Adv. Mater. 29, 1700389 (2017).

    Article  Google Scholar 

  17. 17.

    Yu, X. & Manthiram, A. Ambient-temperature sodium-sulfur batteries with a sodiated Nafion membrane and a carbon nanofiber-activated carbon composite electrode. Adv. Energy Mater. 5, 1500350 (2015).

    Article  Google Scholar 

  18. 18.

    Lu, X. et al. Liquid-metal electrode to enable ultra-low temperature sodium-beta alumina batteries for renewable energy storage. Nat. Commun. 5, 4578 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    Ding, F. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    Zhang, Y. et al. Dendrite-free lithium deposition with self-aligned nanorod structure. Nano Lett. 14, 6889–6896 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    Stark, J. K., Ding, Y. & Kohl, P. A. Dendrite-free electrodeposition and reoxidation of lithium-sodium alloy for metal-anode battery. J. Electrochem. Soc. 158, A1100–A1105 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    Darwiche, A. et al. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J. Am. Chem. Soc. 134, 20805–20811 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    Wang, J. W., Liu, X. H., Mao, S. X. & Huang, J. Y. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. Nano. Lett. 12, 5897–5902 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    Mizutani, Y., Kim, S. J., Ichino, R. & Okido, M. Anodizing of Mg alloys in alkaline solutions. Surf. Coat. Technol. 169, 143–146 (2003).

    Article  Google Scholar 

  25. 25.

    Tavassol, H., Cason, M. W., Nuzzo, R. G. & Gewirth, A. A. Influence of oxides on the stress evolution and reversibility during SnOx conversion and Li-Sn alloying reactions. Adv. Energy Mater. 5, 1400317 (2015).

    Article  Google Scholar 

  26. 26.

    Wei, S. et al. Stabilizing electrochemical interfaces in viscoelastic liquid electrolytes. Sci. Adv. 4, 6243–6252 (2018).

    Article  Google Scholar 

  27. 27.

    Xue, L., Gao, H., Li, Y. & Goodenough, J. B. Cathode dependence of liquid-alloy Na-K anodes. J. Am. Chem. Soc. 140, 3292–3298 (2018).

    CAS  Article  Google Scholar 

  28. 28.

    Li., Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science 358, 506–510 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051 (1979).

    CAS  Article  Google Scholar 

  30. 30.

    Doyle, K. P., Lang, C. M., Kim, K. & Kohl, P. A. Dentrite-free electrochemical deposition of Li-Na alloys from an ionic liquid electrolyte. J. Electrochem. Soc. 153, A1353–A1357 (2006).

    CAS  Article  Google Scholar 

  31. 31.

    Scordilis-Kelley, C. & Carlin, R. T. Lithium and sodium standard reduction potentials in ambient-temperature chloroaluminate molten salts. J. Electrochem. Soc. 140, 1606–1611 (1993).

    CAS  Article  Google Scholar 

  32. 32.

    DuBeshter, T. & Jorne, J. Pulse polarization for Li-ion battery under constant state-of-charge: Part II. Modeling of individual voltage losses and SOC prediction. J. Electrochem. Soc. 164, 3395–3405 (2017).

    Article  Google Scholar 

  33. 33.

    Takami, N., Satoh, A., Hara, M. & Ohsaki, I. Structural and kinetic characterization of lithium intercalation into carbon anodes for secondary lithium batteries. J. Electrochem. Soc. 142, 371–379 (1995).

    CAS  Article  Google Scholar 

  34. 34.

    Luo, C. et al. FIB-SEM investigation on corrosion propagation of aluminium–lithium alloy in sodium chloride solution. Corrosion Eng. Sci. Technol. 50, 390–396 (2014).

    Article  Google Scholar 

  35. 35.

    Franke, P. Thermodynamic Properties of Inorganic Materials · Binary Systems. Part 5: Binary Systems Supplement 1 (Springer, Berlin, 2007).

  36. 36.

    Banerjee, R., Bose, S., Genc, A. & Ayyub, P. The microstructure and electrical transport properties of immiscible copper–niobium alloy thin films. J. Appl. Phys. 103, 033511 (2008).

    Article  Google Scholar 

  37. 37.

    Liu, C. J., Chen, J. S. & Lin, Y. K. Characterization of microstructure, interfacial reaction and diffusion of immiscible Cu(Ta) alloy thin film on SiO2 at elevated temperature. J. Electrochem. Soc. 151, 18–23 (2004).

    Article  Google Scholar 

  38. 38.

    Liu, Y. et al. Making Li-metal electrodes rechargeable by controlling the dendrite growth direction. Nat. Energy 2, 17083 (2017).

    CAS  Article  Google Scholar 

  39. 39.

    Aurbach, D. et al. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 89, 206–218 (2000).

    CAS  Article  Google Scholar 

  40. 40.

    Etacheri, V. et al. Exceptional electrochemical performance of Si-nanowires in 1,3-dioxolane solutions: a surface chemical investigation. Langmuir 28, 6175–6184 (2012).

    CAS  Article  Google Scholar 

  41. 41.

    Miao, R. et al. Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. J. Power Sources 271, 291–297 (2014).

    CAS  Article  Google Scholar 

  42. 42.

    Yan, C. et al. Lithium metal protection through in-situ formed solid electrolyte interphase in lithium-sulfur batteries: the role of polysulfides on lithium anode. J. Power Sources 327, 212–220 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    Yadegari, H. et al. Three-dimensional nanostructured air electrode for sodium–oxygen batteries: a mechanism study toward the cyclability of the cell. Chem. Mater. 27, 3040–3047 (2015).

    CAS  Article  Google Scholar 

  44. 44.

    Liu, Q. C. et al. Artificial protection film on lithium metal anode toward long-cycle-life lithium–oxygen batteries. Adv. Mater. 27, 5241–5247 (2015).

    CAS  Article  Google Scholar 

  45. 45.

    Elia, G. A. et al. An advanced lithium–air battery exploiting an ionic liquid-based electrolyte. Nano Lett. 14, 6572–6577 (2014).

    CAS  Article  Google Scholar 

  46. 46.

    Liu, W. M. et al. NiCo2O4 nanosheets supported on Ni foam for rechargeable nonaqueous sodium–air batteries. Electrochem. Commun. 45, 87–90 (2014).

    Article  Google Scholar 

Download references


This work was financially supported by the National Key R&D Program of China (grants 2017YFA0206700), the National Natural Science Foundation of China (grants 21725103, 51472232, 51522101, 51471075, 51631004, 21771013 and 51522202), the Strategic Priority Research Program of the Chinese Academy of Sciences (grant XDA09010404), JCKY2016130B010, 111 project (grant B14009), and the Program for the JLU Science and Technology Innovative Research Team (2017TD-09).

Author information




X.B.Z., J.M.Y., Y.Z. and J.L.M. developed the research concept. J.M.Y. designed the Li-Na alloy and catalyst, and J.L.M. then prepared the materials. X.B.Z. designed the electrochemical experiments, which J.L.M and Y.Y. performed. X.B.Z., J.M.Y., Y.Z., J.L.M. and F.L.M. contributed to interpretation of the results and wrote the manuscript, and all authors contributed to the scientific discussion.

Corresponding authors

Correspondence to Jun-min Yan or Yu Zhang or Xin-bo Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–27, Supplementary Tables 1–4

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, Jl., Meng, Fl., Yu, Y. et al. Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy–O2 batteries. Nature Chem 11, 64–70 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing