Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enantioselective α-functionalizations of ketones via allylic substitution of silyl enol ethers

Abstract

The enantioselective construction of carbon–heteroatom and carbon–carbon bonds that are alpha to ketones leads to the formation of substructures that are ubiquitous in natural products, pharmaceuticals and agrochemicals. Traditional methods to form such bonds have relied on combining ketone enolates with electrophiles. Reactions with heteroatom-based electrophiles require special reagents in which the heteroatom, which is typically nucleophilic, has been rendered electrophilic by changes to the oxidation state. The resulting products usually require post-synthetic transformations to unveil the functional group in the final desired products. Moreover, different catalytic systems are typically required for the reaction of different electrophiles. Here, we report a strategy for the formal enantioselective α-functionalization of ketones to form products containing a diverse array of substituents at the alpha position with a single catalyst. This strategy involves an unusual reversal of the role of the nucleophile and electrophile to form C–N, C–O, C–S and C–C bonds from a series of masked ketone electrophiles and a wide range of conventional heteroatom and carbon nucleophiles catalysed by a metallacyclic iridium catalyst.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Typical approaches to the α-functionalization of ketones and our design of an alternative strategy involving a reversal of the origin of the nucleophile and electrophile.
Fig. 2: Importance of the protecting group.
Fig. 3: Selected transformations of the allylic substitution products.

Similar content being viewed by others

Data availability

All relevant data are available with the manuscript, in the Supplementary Information files.

References

  1. Bellina, F. & Rossi, R. Transition metal-catalyzed direct arylation of substrates with activated sp 3 -hybridized C–H bonds and some of their synthetic equivalents with aryl halides and pseudohalides. Chem. Rev. 110, 1082–1146 (2010).

    Article  CAS  Google Scholar 

  2. Cano, R., Zakarian, A. & McGlacken, G. P. Direct asymmetric alkylation of ketones: still unconquered. Angew. Chem. Int. Ed. 56, 9278–9290 (2017).

    Article  CAS  Google Scholar 

  3. Janey, J. M. Recent advances in catalytic, enantioselective α aminations and α oxygenations of carbonyl compounds. Angew. Chem. Int. Ed. 44, 4292–4300 (2005).

    Article  CAS  Google Scholar 

  4. Smith, A. M. R. & Hii, K. K. Transition metal catalyzed enantioselective α heterofunctionalization of carbonyl compounds. Chem. Rev. 111, 1637–1656 (2011).

    Article  CAS  Google Scholar 

  5. Zhou, F., Liao, F.-M., Yu, J.-S. & Zhou, J. Catalytic asymmetric electrophilic amination reactions to form nitrogen-bearing tetrasubstituted carbon stereocenters. Synthesis 46, 2983–3003 (2014).

    Article  CAS  Google Scholar 

  6. Maji, B. & Yamamoto, H. Use of in situ generated nitrosocarbonyl compounds in catalytic asymmetric α-hydroxylation and α-amination reactions. Bull. Chem. Soc. Jpn 88, 753–762 (2015).

    Article  CAS  Google Scholar 

  7. Bøgevig, A., Sundén, H. & Córdova, A. Direct catalytic enantioselective α-aminoxylation of ketones: a stereoselective synthesis of α-hydroxy and α,α-dihydroxy ketones. Angew. Chem. Int. Ed. 43, 1109–1112 (2004).

    Article  Google Scholar 

  8. Zhou, L. et al. Development of tartaric acid derived chiral guanidines and their application to catalytic enantioselective α-hydroxylation of β-dicarbonyl compounds. Org. Lett. 15, 3106–3109 (2013).

    Article  Google Scholar 

  9. Yao, H., Lian, M., Li, Z., Wang, Y. & Meng, Q. Asymmetric direct α-hydroxylation of β-oxo esters catalyzed by chiral quaternary ammonium salts derived from cinchona alkaloids. J. Org. Chem. 77, 9601–9608 (2012).

    Article  CAS  Google Scholar 

  10. Wang, Y. et al. A series of cinchona-derived N-oxide phase-transfer catalysts: application to the photo-organocatalytic enantioselective α-hydroxylation of β-dicarbonyl compounds. J. Org. Chem. 81, 7042–7050 (2016).

    Article  CAS  Google Scholar 

  11. Yu, J.-S. et al. Catalytic enantioselective construction of sulfur-containing tetrasubstituted carbon stereocenters. ACS Catal. 6, 5319–5344 (2016).

    Article  CAS  Google Scholar 

  12. Kumaragurubaran, N., Juhl, K., Zhuang, W., Bøgevig, A. & Jørgensen, K. A. Direct l-proline-catalyzed asymmetric α-amination of ketones. J. Am. Chem. Soc. 124, 6254–6255 (2002).

    Article  CAS  Google Scholar 

  13. Yang, X. & Toste, F. D. Direct asymmetric amination of α-branched cyclic ketones catalyzed by a chiral phosphoric acid. J. Am. Chem. Soc. 137, 3205–3208 (2015).

    Article  CAS  Google Scholar 

  14. Ohmatsu, K., Ando, Y., Nakashima, T. & Ooi, T. A modular strategy for the direct catalytic asymmetric α-amination of carbonyl compounds. Chemistry 1, 802–810 (2016).

    Article  CAS  Google Scholar 

  15. Huang, X., Webster, R. D., Harms, K. & Meggers, E. Asymmetric catalysis with organic azides and diazo compounds initiated by photoinduced electron transfer. J. Am. Chem. Soc. 138, 12636–12642 (2016).

    Article  CAS  Google Scholar 

  16. Shang, M. et al. Frustrated Lewis acid/Brønsted base catalysts for direct enantioselective α-amination of carbonyl compounds. J. Am. Chem. Soc. 139, 95–98 (2017).

    Article  CAS  Google Scholar 

  17. Guo, F., Clift, M. D. & Thomson, R. J. Oxidative coupling of enolates, enol silanes, and enamines: methods and natural product synthesis. Eur. J. Org. Chem. 2012, 4881–4896 (2012).

    Article  CAS  Google Scholar 

  18. Zhu, Y., Zhang, L. & Luo, S. Asymmetric α-photoalkylation of β-ketocarbonyls by primary amine catalysis: facile access to acyclic all-carbon quaternary stereocenters. J. Am. Chem. Soc. 136, 14642–14645 (2014).

    Article  CAS  Google Scholar 

  19. Jang, H.-Y., Hong, J.-B. & MacMillan, D. W. C. Enantioselective organocatalytic singly occupied molecular orbital activation: the enantioselective α-enolation of aldehydes. J. Am. Chem. Soc. 129, 7004–7005 (2007).

    Article  CAS  Google Scholar 

  20. Hartwig, J. F. & Stanley, L. M. Mechanistically driven development of iridium catalysts for asymmetric allylic substitution. Acc. Chem. Res. 43, 1461–1475 (2010).

    Article  CAS  Google Scholar 

  21. Liu, W.-B., Xia, J.-B. & You, S.-L. Iridium-catalyzed asymmetric allylic substitutions. Top. Organomet. Chem. 38, 155–208 (2012).

    Article  CAS  Google Scholar 

  22. Hethcox, J. C., Shockley, S. E. & Stoltz, B. M. Iridium-catalyzed diastereo-, enantio-, and regioselective allylic alkylation with prochiral enolates. ACS Catal. 6, 6207–6213 (2016).

    Article  CAS  Google Scholar 

  23. Qu, J. & Helmchen, G. Applications of iridium-catalyzed asymmetric allylic substitution reactions in target-oriented synthesis. Acc. Chem. Res. 50, 2539–2555 (2017).

    Article  CAS  Google Scholar 

  24. Murphy, K. E. & Hoveyda, A. H. Enantioselective synthesis of α-alkyl-β,γ-unsaturated esters through efficient Cu-catalyzed allylic alkylations. J. Am. Chem. Soc. 125, 4690–4691 (2003).

    Article  CAS  Google Scholar 

  25. Lee, Y. & Hoveyda, A. H. Lewis base activation of Grignard reagents with N-heterocyclic carbenes, Cu-free catalytic enantioselective additions to γ-chloro-α,β-unsaturated esters. J. Am. Chem. Soc. 128, 15604–15605 (2006).

    Article  CAS  Google Scholar 

  26. Gao, F., Lee, Y., Mandai, K. & Hoveyda, A. H. Quaternary carbon stereogenic centers through copper-catalyzed enantioselective allylic substitutions with readily accessible aryl- or heteroaryllithium reagents and aluminum chlorides. Angew. Chem., Int. Ed. 49, 8370–8374 (2010).

    Article  CAS  Google Scholar 

  27. Den Hartog, T., Maciá, B., Minaard, A. & Feringa, B. L. Copper-catalyzed asymmetric allylic alkylation of halocrotonates: efficient synthesis of versatile chiral multifunctional building blocks. Adv. Synth. Catal. 352, 999–1013 (2010).

    Article  Google Scholar 

  28. Ashfeld, B. L., Miller, K. A. & Martin, S. F. Direct, stereoselective substitution in [Rh(CO)2 Cl]2 -catalyzed allylic alkylations of unsymmetrical substrates. Org. Lett. 6, 1321–1324 (2004).

    Article  CAS  Google Scholar 

  29. Ohmatsu, K., Ito, M., Kunieda, T. & Ooi, T. Exploiting the modularity of ion-paired chiral ligands for palladium-catalyzed enantioselective allylation of benzofuran-2(3H)-ones. J. Am. Chem. Soc. 135, 590–593 (2013).

    Article  CAS  Google Scholar 

  30. Leitner, A., Shu, C. & Hartwig, J. F. Effects of catalyst activation and ligand steric properties on the enantioselective allylation of amines and phenoxides. Org. Lett. 7, 1093–1096 (2005).

    Article  CAS  Google Scholar 

  31. Shu, C., Leitner, A. & Hartwig, J. F. Enantioselective allylation of aromatic amines after in situ generation of an activated cyclometalated iridium catalyst. Angew. Chem., Int. Ed. 43, 4797–4800 (2004).

    Article  CAS  Google Scholar 

  32. Tosatti, P. et al. Iridium-catalyzed asymmetric allylic amination with polar amines: access to building blocks with lead-like molecular properties. Adv. Synth. Catal. 352, 3153–3157 (2010).

    Article  CAS  Google Scholar 

  33. Trost, B. M. α-Sulfenylated carbonyl compounds in organic synthesis. Chem. Rev. 78, 363–382 (1978).

    Article  CAS  Google Scholar 

  34. Hegedus, L. L. & McCabe, R. W. Catalyst Poisoning (Marcel Dekker, New York, 1984).

    Google Scholar 

  35. Manabe, Y., Kanematsu, M., Hiromasa, Y., Yoshida, M. & Shishido, K. Concise total syntheses of heliannuols B and D. Tetrahedron 70, 742–748 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the National Institutes of Health (GM-55382). Z.-T.H. thanks a joint postdoc fellowship from Pharmaron and Shanghai Institute of Organic Chemistry (SIOC). We thank Sophie I. Arlow for assistance in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Z.-T.H. and J.F.H. conceived and designed the project. Z.-T.H. performed the experiments and collected and analysed the data. J.F.H. directed the project. Z.-T.H. and J.F.H. co-wrote the manuscript.

Corresponding author

Correspondence to John F. Hartwig.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Details of experiments for reaction development, experimental procedures, characterization data of all new molecules, spectra and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, ZT., Hartwig, J.F. Enantioselective α-functionalizations of ketones via allylic substitution of silyl enol ethers. Nature Chem 11, 177–183 (2019). https://doi.org/10.1038/s41557-018-0165-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0165-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing