Heteromultivalent peptide recognition by co-assembly of cyclodextrin and calixarene amphiphiles enables inhibition of amyloid fibrillation

Abstract

Heteromultivalency, which involves the simultaneous interactions of more than one type of ligand with more than one type of receptor, is ubiquitous in living systems and provides a powerful strategy to improve the binding efficiency of heterotopic species such as proteins and membranes. However, the design and development of artificial heteromultivalent receptors is still challenging owing to tedious synthesis processes and the need for precise control over the spatial arrangement of the binding sites. Here, we have designed a heteromultivalent platform by co-assembling cyclodextrin and calixarene amphiphiles, so that two orthogonal, non-covalent binding sites are distributed on the surface of the co-assembly. Binding with model peptides shows a synergistic effect of the two receptors, (hetero)multivalency and self-adaptability. The co-assembly shows promise for inhibition of the fibrillation of amyloid-β peptides and the dissolution of amyloid-β fibrils, substantially reducing amyloid cytotoxicity. This self-assembled heteromultivalency concept is easily amenable to other ensembles and targets, so that versatile biomedical applications can be envisaged.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Illustration of the heteromultivalent peptide recognition by co-assembly of CD and CA amphiphiles.
Fig. 2: Structures of model peptides Aβ42 and DA-39.
Fig. 3: Fluorescence titration curves.
Fig. 4: CD−CA co-assembly inhibits 42 aggregation and disaggregates 42 fibrils.

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information, and from the corresponding author upon reasonable request.

References

  1. 1.

    Mammen, M., Choi, S.-K. & Whitesides, G. M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 37, 2754–2794 (1998).

    Article  Google Scholar 

  2. 2.

    Mulder, A., Huskens, J. & Reinhoudt, D. N. Multivalency in supramolecular chemistry and nanofabrication. Org. Biomol. Chem. 2, 3409–3424 (2004).

    CAS  Article  Google Scholar 

  3. 3.

    Fasting, C. et al. Multivalency as a chemical organization and action principle. Angew. Chem. Int. Ed. 51, 10472–10498 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    Badjic, J. D., Nelson, A., Cantrill, S. J., Turnbull, W. B. & Stoddart, J. F. Multivalency and cooperativity in supramolecular chemistry. Acc. Chem. Res. 38, 723–732 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    Hunter, C. A. & Anderson, H. L. What is cooperativity? Angew. Chem. Int. Ed. 48, 7488–7499 (2009).

    CAS  Article  Google Scholar 

  6. 6.

    Xu, J.-F., Chen, L. & Zhang, X. How to make weak noncovalent interactions stronger. Chem. Eur. J. 21, 11938–11946 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    Harada, A., Kobayashi, R., Takashima, Y., Hashidzume, A. & Yamaguchi, H. Macroscopic self-assembly through molecular recognition. Nat. Chem. 3, 34–37 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    Huskens, J., Prins, L. J., Haag, R. & Ravoo, B. J. Multivalency: Concepts, Research and Applications (John Wiley & Sons, New York, 2018).

    Google Scholar 

  9. 9.

    Grauer, A., Riechers, A., Ritter, S. & König, B. Synthetic receptors for the differentiation of phosphorylated peptides with nanomolar affinities. Chem. Eur. J. 14, 8922–8927 (2008).

    CAS  Article  Google Scholar 

  10. 10.

    Drechsler, U., Erdogan, B. & Rotello, V. M. Nanoparticles: scaffolds for molecular recognition. Chem. Eur. J. 10, 5570–5579 (2004).

    CAS  Article  Google Scholar 

  11. 11.

    Jiménez Blanco, J. L., Ortiz Mellet, C. & García Fernández, J. M. Multivalency in heterogeneous glycoenvironments: hetero-glycoclusters, -glycopolymers and -glycoassemblies. Chem. Soc. Rev. 42, 4518–4531 (2013).

    Article  Google Scholar 

  12. 12.

    Modery-Pawlowski, C. L. & Sen Gupta, A. Heteromultivalent ligand-decoration for actively targeted nanomedicine. Biomaterials 35, 2568–2579 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Miyachi, A. et al. Multivalent galacto-trehaloses: design, synthesis, and biological evaluation under the concept of carbohydrate modules. Biomacromolecules 10, 1846–1853 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    García-Moreno, M. I., Ortega-Caballero, F., Rísquez-Cuadro, R., Ortiz Mellet, C. & García Fernández, J. M. The impact of heteromultivalency in lectin recognition and glycosidase inhibition: an integrated mechanistic study. Chem. Eur. J. 23, 6295–6304 (2017).

    Article  Google Scholar 

  15. 15.

    Baldini, L., Casnati, A., Sansone, F. & Ungaro, R. Calixarene-based multivalent ligands. Chem. Soc. Rev. 36, 254–266 (2007).

    CAS  Article  Google Scholar 

  16. 16.

    Appel, E. A. et al. Supramolecular cross-linked networks via host–guest complexation with cucurbit[8]uril. J. Am. Chem. Soc. 132, 14251–14260 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    Harada, A., Takashima, Y. & Nakahata, M. Supramolecular polymeric materials via cyclodextrin–guest interactions. Acc. Chem. Res. 47, 2128–2140 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    Vico, R. V., Voskuhl, J. & Ravoo, B. J. Multivalent interaction of cyclodextrin vesicles, carbohydrate guests, and lectins: a kinetic investigation. Langmuir 27, 1391–1397 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    Ahn, Y., Jang, Y., Selvapalam, N., Yun, G. & Kim, K. Supramolecular velcro for reversible underwater adhesion. Angew. Chem. Int. Ed. 52, 3140–3144 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    Thi, T. T. H. et al. Supramolecular cyclodextrin supplements to improve the tissue adhesion strength of gelatin bioglues. ACS Macro Lett. 6, 83–88 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    Takashima, Y. et al. Expansion–contraction of photoresponsive artificial muscle regulated by host–guest interactions. Nat. Commun. 3, 1270 (2012).

    Article  Google Scholar 

  22. 22.

    Wei, K. et al. Robust biopolymeric supramolecular ‘host–guest macromer’ hydrogels reinforced by in situ formed multivalent nanoclusters for cartilage regeneration. Macromolecules 49, 866–875 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Namgung, R. et al. Poly-cyclodextrin and poly-paclitaxel nano-assembly for anticancer therapy. Nat. Commun. 5, 3702 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    Bügler, J. et al. Interconnective host–guest complexation of β-cyclodextrin-calix[4]arene couples. J. Am. Chem. Soc. 121, 28–33 (1999).

    Article  Google Scholar 

  25. 25.

    Liu, Y. et al. Cooperative multiple recognition by novel calix[4]arene-tethered β-cyclodextrin and calix[4]arene-bridged bis(β-cyclodextrin). J. Org. Chem. 66, 7209–7215 (2001).

    CAS  Article  Google Scholar 

  26. 26.

    Strobel, M. et al. Self-assembly of amphiphilic calix[4]arenes in aqueous solution. Adv. Funct. Mater. 16, 252–259 (2006).

    CAS  Article  Google Scholar 

  27. 27.

    Jie, K., Zhou, Y., Yao, Y. & Huang, F. Macrocyclic amphiphiles. Chem. Soc. Rev. 44, 3568–3587 (2015).

    CAS  Article  Google Scholar 

  28. 28.

    Ravoo, B. J., Jacquier, J. C. & Wenz, G. Molecular recognition of polymers by cyclodextrin vesicles. Angew. Chem. Int. Ed. 42, 2066–2070 (2003).

    CAS  Article  Google Scholar 

  29. 29.

    Voskuhl, J., Stuart, M. C. A. & Ravoo, B. J. Sugar-decorated sugar vesicles: lectin-carbohydrate recognition at the surface of cyclodextrin vesicles. Chem. Eur. J. 16, 2790–2796 (2010).

    CAS  Article  Google Scholar 

  30. 30.

    Yu, G. et al. A sugar-functionalized amphiphilic pillar[5]arene: synthesis, self-assembly in water, and application in bacterial cell agglutination. J. Am. Chem. Soc. 135, 10310–10313 (2013).

    CAS  Article  Google Scholar 

  31. 31.

    Xu, Z. et al. Broad-spectrum tunable photoluminescent nanomaterials constructed from a modular light-harvesting platform based on macrocyclic amphiphiles. Adv. Mater. 28, 7666–7671 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Ravoo, B. J. & Darcy, R. Cyclodextrin bilayer vesicles. Angew. Chem. Int. Ed. 39, 4323–4326 (2000).

    Article  Google Scholar 

  33. 33.

    Guo, D.-S. et al. Inclusion of neutral guests by water-soluble macrocyclic hosts—a comparative thermodynamic investigation with cyclodextrins, calixarenes and cucurbiturils. Supramol. Chem. 28, 384–395 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    Liu, Y., Li, C., Guo, D.-S., Pan, Z. & Li, Z. A comparative study of complexation of β-cyclodextrin, calix[4]arenesulfonate and cucurbit[7]uril with dye guests: fluorescence behavior and binding ability. Supramol. Chem. 19, 517–523 (2007).

    Article  Google Scholar 

  35. 35.

    Xu, Z. et al. Supramolecular color-tunable photoluminescent materials based on a chromophore cascade as security inks with dual encryption. Mater. Chem. Front. 1, 1847–1852 (2017).

    CAS  Article  Google Scholar 

  36. 36.

    Dutt, S., Wilch, C. & Schrader, T. Artificial synthetic receptors as regulators of protein activity. Chem. Commun. 47, 5376–5383 (2011).

    CAS  Article  Google Scholar 

  37. 37.

    Schrader, T. & Koch, S. Artificial protein sensors. Mol. Biosyst. 3, 241–248 (2007).

    CAS  Article  Google Scholar 

  38. 38.

    Ludwig, R. Calixarenes for biochemical recognition and separation. Microchim. Acta 152, 1–19 (2005).

    CAS  Article  Google Scholar 

  39. 39.

    Rekharsky, M. & Inoue, Y. Chiral recognition thermodynamics of β-cyclodextrin: the thermodynamic origin of enantioselectivity and the enthalpy–entropy compensation effect. J. Am. Chem. Soc. 122, 4418–4435 (2000).

    CAS  Article  Google Scholar 

  40. 40.

    Beulen, M. W. J. et al. Host–guest interactions at self-assembled monolayers of cyclodextrins on gold. Chem. Eur. J. 6, 1176–1183 (2000).

    CAS  Article  Google Scholar 

  41. 41.

    Huskens, J. et al. A model for describing the thermodynamics of multivalent host-guest interactions at interfaces. J. Am. Chem. Soc. 126, 6784–6797 (2004).

    CAS  Article  Google Scholar 

  42. 42.

    Satav, T. N. The Self-assembly and Dynamics of Weakly Multivalent, Peptide-based, Host–Guest Systems. PhD thesis, Univ. Twente (2015).

  43. 43.

    Chen, C. C. & Dormidontova, E. E. Architectural and structural optimization of the protective polymer layer for enhanced targeting. Langmuir 21, 5605–5615 (2005).

    CAS  Article  Google Scholar 

  44. 44.

    Liu, J. & Conboy, J. C. Direct measurement of the transbilayer movement of phospholipids by sum-frequency vibrational spectroscopy. J. Am. Chem. Soc. 126, 8376–8377 (2004).

    CAS  Article  Google Scholar 

  45. 45.

    Barnard, A. & Smith, D. K. Self-assembled multivalency: dynamic ligand arrays for high-affinity binding. Angew. Chem. Int. Ed. 51, 6572–6581 (2012).

    CAS  Article  Google Scholar 

  46. 46.

    Goedert, M. & Spillantini, M. G. A century of Alzheimer’s disease. Science 314, 777–781 (2006).

    CAS  Article  Google Scholar 

  47. 47.

    Jonsson, T. et al. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 488, 96–99 (2012).

    CAS  Article  Google Scholar 

  48. 48.

    Yoshiike, Y., Akagi, T. & Takashima, A. Surface structure of amyloid-beta fibrils contributes to cytotoxicity. Biochemistry 46, 9805–9812 (2007).

    CAS  Article  Google Scholar 

  49. 49.

    Kelenyi, G. On the histochemistry of azo group-free thiazole dyes. J. Histochem. Cytochem. 15, 172–180 (1967).

    CAS  Article  Google Scholar 

  50. 50.

    Wang, Z., Tao, S., Dong, X. & Sun, Y. Para-sulfonatocalix[n]arenes inhibit amyloid β-peptide fibrillation and reduce amyloid cytotoxicity. Chem. Asian J. 12, 341–346 (2017).

    CAS  Article  Google Scholar 

  51. 51.

    Wahlström, A. et al. Specific binding of a β-cyclodextrin dimer to the amyloid β peptide modulates the peptide aggregation process. Biochemistry 51, 4280–4289 (2012).

    Article  Google Scholar 

  52. 52.

    Song, Y., Moore, E. G., Guo, Y. & Moore, J. S. Polymer–peptide conjugates disassemble amyloid β fibrils in a molecular-weight dependent manner. J. Am. Chem. Soc. 139, 4298–4301 (2017).

    CAS  Article  Google Scholar 

  53. 53.

    Lee, H. H. et al. Supramolecular inhibition of amyloid fibrillation by cucurbit[7]uril. Angew. Chem. Int. Ed. 53, 7461–7465 (2014).

    CAS  Article  Google Scholar 

  54. 54.

    Sievers, S. A. et al. Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature 475, 96–100 (2011).

    CAS  Article  Google Scholar 

  55. 55.

    Sinha, S. et al. Lysine-specific molecular tweezers are broad-spectrum inhibitors of assembly and toxicity of amyloid proteins. J. Am. Chem. Soc. 133, 16958–16969 (2011).

    CAS  Article  Google Scholar 

  56. 56.

    Hamley, I. W. The amyloid beta peptide: a chemist’s perspective. Role in Alzheimer’s and fibrillization. Chem. Rev. 112, 5147–5192 (2012).

    CAS  Article  Google Scholar 

  57. 57.

    Soto, C. et al. β-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer’s therapy. Nat. Med. 4, 822–826 (1998).

    CAS  Article  Google Scholar 

  58. 58.

    Permanne, B. et al. Reduction of amyloid load and cerebral damage in a transgenic mouse model of Alzheimer’s disease by treatment with a β-sheet breaker peptide. FASEB J. 16, 860–862 (2002).

    CAS  Article  Google Scholar 

  59. 59.

    Wang, D. et al. Pharmacodynamics in Alzheimer’s disease model rats of a bifunctional peptide with the potential to accelerate the degradation and reduce the toxicity of amyloid β-Cu fibrils. Acta Biomater. 65, 327–338 (2018).

    CAS  Article  Google Scholar 

  60. 60.

    Karran, E., Mercken, M. & De Strooper, B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 10, 698–712 (2011).

    CAS  Article  Google Scholar 

  61. 61.

    Brender, J. R., Salamekh, S. & Ramamoorthy, A. Membrane disruption and early events in the aggregation of the diabetes related peptide IAPP from a molecular perspective. Acc. Chem. Res. 45, 454–462 (2012).

    CAS  Article  Google Scholar 

  62. 62.

    Fulton, D. A., Cantrill, S. J. & Stoddart, J. F. Probing polyvalency in artificial systems exhibiting molecular recognition. J. Org. Chem. 67, 7968–7981 (2002).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The Chinese team acknowledges support from the NNSFC (21672112 and 51873090), Fundamental Research Funds for the Central Universities and the Program of Tianjin Young Talents. The German team thanks T. Böckerman for the synthesis of amphiphilic CD and the Deutsche Forschungsgemeinschaft (DFG SFB 858) for financial support.

Author information

Affiliations

Authors

Contributions

Z.X., B.J.R. and D.S.G. conceived the experiments. Z.X. prepared the assemblies and performed the heteromultivalent peptide recognition. Z.X., W.W. and Z.Y. performed the inhibition of amyloid fibrillation. S.J. performed the cell experiments. Z.X., B.J.R. and D.S.G. contributed to writing of the manuscript, and all authors commented on it.

Corresponding authors

Correspondence to Bart Jan Ravoo or Dong-Sheng Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary materials and methods, Supplementary characterization, Supplementary Figs 1–27 and Supplementary References 1–9

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Jia, S., Wang, W. et al. Heteromultivalent peptide recognition by co-assembly of cyclodextrin and calixarene amphiphiles enables inhibition of amyloid fibrillation. Nature Chem 11, 86–93 (2019). https://doi.org/10.1038/s41557-018-0164-y

Download citation

Further reading