Catalytic activation of unstrained C(aryl)–C(aryl) bonds in 2,2′-biphenols

Abstract

Transition metal catalysis has emerged as an important means for C–C activation that allows mild and selective transformations. However, the current scope of C–C bonds that can be activated is primarily restricted to either highly strained systems or more polarized C–C bonds. In contrast, the catalytic activation of non-polar and unstrained C–C moieties remains an unmet challenge. Here we report a general approach for the catalytic activation of the unstrained C(aryl)–C(aryl) bonds in 2,2′-biphenols. The key is to utilize the phenol moiety as a handle to install phosphinites as a recyclable directing group. Using hydrogen gas as the reductant, monophenols are obtained with a low catalyst loading and high functional group tolerance. This approach is also applied to the synthesis of 2,3,4-trisubstituted phenols. A further mechanistic study suggests that the C–C activation step is mediated by a rhodium(i) monohydride species. Finally, a preliminary study on breaking the inert biphenolic moieties in lignin models is illustrated.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Catalytic activation of non-polar unstrained C−C bonds.
Fig. 2: Exploratory mechanistic study.
Fig. 3: Catalytic reductive cleavage of C(aryl)−C(aryl) bonds in 2,2′-biphenols.
Fig. 4: Model study for the cleavage of aryl−aryl bonds in lignin dimers.

Data availability

Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition nos CCDC 1848268 (2z), 1848266 ([Rh(2al)Cl)]2) and 1848267 (8g). Copies of the data can be obtained free of charge from www.ccdc.cam.ac.uk/structures/. All other data that supporting the findings of this study are available within the article and its Supplementary Information, or from the corresponding author upon reasonable request.

References

  1. 1.

    Drahl, M. A., Manpadi, M. & Williams, L. J. C−C fragmentation: origins and recent applications. Angew. Chem. Int. Ed. 52, 11222–11251 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    Fahim, M. A., Alsahhaf, T. A. & Elkilani, A. Fundamentals of Petroleum Refining 199–235 (Elsevier, Oxford, 2010).

  3. 3.

    Murakami, M. & Ito, Y. Cleavage of carbon−carbon single bonds by transition metals. Top. Organomet. Chem. 3, 97–129 (1999).

    CAS  Article  Google Scholar 

  4. 4.

    Rybtchinski, B. & Milstein, D. Metal insertion into C−C bonds in solution. Angew. Chem. Int. Ed. 38, 870–883 (1999).

    Article  Google Scholar 

  5. 5.

    Chen, F., Wang, T. & Jiao, N. Recent advances in transition-metal-catalyzed functionalization of unstrained carbon–carbon bonds. Chem. Rev. 114, 8613–8661 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    Dong, G. C–C Bond Activation (Topics in Current Chemistry 346, Springer, Berlin, 2014).

  7. 7.

    Souillart, L. & Cramer, N. Catalytic C–C bond activations via oxidative addition to transition metals. Chem. Rev. 115, 9410–9464 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Murakami, M. Cleavage of Carbon–Carbon Single Bonds by Transition Metals (Wiley-VCH, Weinheim, 2015)

  9. 9.

    Kim, D.-S., Park, W.-J. & Jun, C.-H. Metal–organic cooperative catalysis in C–H and C–C bond activation. Chem. Rev. 117, 8977–9015 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    Fumagalli, G., Stanton, S. & Bower, J. F. Recent methodologies that exploit C–C single-bond cleavage of strained ring systems by transition metal complexes. Chem. Rev. 117, 9404–9432 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Gozin, M., Weisman, A., Ben-David, Y. & Milstein, D. Activation of a carbon–carbon bond in solution by transition-metal insertion. Nature 364, 699–701 (1993).

    CAS  Article  Google Scholar 

  12. 12.

    Gozin, M. et al. Transfer of methylene groups promoted by metal complexation. Nature 370, 42–44 (1994).

    CAS  Article  Google Scholar 

  13. 13.

    Ruhland, K., Obenhuber, A. & Hoffmann, S. D. Cleavage of unstrained C(sp 2)–C(sp 2) single bonds with Ni0 complexes using chelating assistance. Organometallics 27, 3482–3495 (2008).

    CAS  Article  Google Scholar 

  14. 14.

    Grein, F. Twist angles and rotational energy barriers of biphenyl and substituted biphenyls. J. Phys. Chem. A 106, 3823–3827 (2002).

    CAS  Article  Google Scholar 

  15. 15.

    Rousseau, G. & Breit, B. Removable directing groups in organic synthesis and catalysis. Angew. Chem. Int. Ed. 50, 2450–2494 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    Lewis, L. N. & Smith, J. F. Catalytic carbon–carbon bond formation via ortho-metalated complexes. J. Am. Chem. Soc. 108, 2728–2735 (1986).

    CAS  Article  Google Scholar 

  17. 17.

    Bedford, R. B., Coles, S. J., Hursthouse, M. B. & Limmert, M. E. The catalytic intermolecular orthoarylation of phenols. Angew. Chem. Int. Ed. 42, 112–114 (2003).

    CAS  Article  Google Scholar 

  18. 18.

    Liou, S.-Y., Gozin, M. & Milstein, D. Directly observed oxidative addition of a strong carbon–carbon bond to a soluble metal complex. J. Am. Chem. Soc. 117, 9774–9775 (1995).

    CAS  Article  Google Scholar 

  19. 19.

    Liou, S.-Y., van der Boom, M. E. & Milstein, D. Catalytic selective cleavage of a strong C–C single bond by rhodium in solution. Chem. Commun. 687–688 (1998).

  20. 20.

    Evans, D., Osborn, J. A. & Wilkinson, G. Hydroformylation of alkenes by use of rhodium complex catalysts. J. Chem. Soc. A 3133–3142 (1968).

  21. 21.

    Dai, H.-X., Li, G., Zhang, X.-G., Stepan, A. F. & Yu, J.-Q. Pd(ii)-catalyzed ortho- or meta-C–H olefination of phenol derivatives. J. Am. Chem. Soc. 135, 7567–7571 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    Luo, J., Preciado, S. & Larrosa, I. Overriding orthopara selectivity via a traceless directing group relay strategy: the meta-selective arylation of phenols. J. Am. Chem. Soc. 136, 4109–4112 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    Schröder, N., Wencel-Delord, J. & Glorius, F. High-yielding, versatile, and practical [Rh(iii)Cp*] catalyzed ortho bromination and iodination of arenes. J. Am. Chem. Soc. 134, 8298–8301 (2012).

    Article  Google Scholar 

  24. 24.

    Kar, A., Mangu, N., Kaiser, H. M., Beller, M. & Tse, M. A general gold-catalyzed direct oxidative coupling of non-activated arenes. Chem. Commun. 386–388 (2008).

  25. 25.

    Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L. & Weckhuysen, B. M. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599 (2010).

    CAS  Article  Google Scholar 

  26. 26.

    Sergeev, A. G. & Hartwig, J. F. Selective, nickel-catalyzed hydrogenolysis of aryl ethers. Science 332, 439–443 (2011).

    CAS  Article  Google Scholar 

  27. 27.

    Rahimi, A., Azarpira, A., Kim, H., Ralph, J. & Stahl, S. S. Chemoselective metal-free aerobic alcohol oxidation in lignin. J. Am. Chem. Soc. 135, 6415–6418 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    Rahimi, A., Ulbrich, A., Coon, J. J. & Stahl, S. S. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 515, 249–252 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    Van den Bosch, S. et al. Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy Environ. Sci. 8, 1748–1763 (2015).

    Article  Google Scholar 

  30. 30.

    Gao, F., Webb, J. D., Sorek, H., Wemmer, D. E. & Hartwig, J. F. Fragmentation of lignin samples with commercial Pd/C under ambient pressure of hydrogen. ACS Catal. 6, 7385–7392 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    Shuai, L. et al. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science 354, 329–333 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Karkas, M. D., Matsuura, B. S., Monos, T. M., Magallanes, G. & Stephenson, C. R. J. Transition-metal catalyzed valorization of lignin: the key to a sustainable carbon-neutral future. Org. Biomol. Chem. 14, 1853–1914 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Zakzeski, J. & Weckhuysen, B. M. Lignin solubilization and aqueous phase reforming for the production of aromatic chemicals and hydrogen. ChemSusChem 4, 369–378 (2011).

    CAS  Article  Google Scholar 

  34. 34.

    Dimmel, D. & Gellerstedt, G. in Lignin and Lignans: Advances in Chemistry (eds Heitner C., Dimmel D. & Schmidt J.) 349–391 (CRC Press, Boca Raton, 2010).

  35. 35.

    Rinaldi, R. et al. Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew. Chem. Int. Ed. 55, 8164–8215 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    Argyropoulos, D. S. et al. Abundance and reactivity of dibenzodioxocins in softwood lignin. J. Agric. Food. Chem. 50, 658–666 (2002).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the University of Chicago, NIGMS (R01GM109054) and the Sloan Foundation for research support. We acknowledge G. Lu and P. Liu (University of Pittsburgh) for helpful discussion on the computational study. Calculations were performed at the Extreme Science and Engineering Discovery Environment (XSEDE) supported by the NSF. J.Z. acknowledges the financial support from Shanghai Institute of Organic Chemistry (SIOC), Pharmaron and Zhejiang Medicine for a joint postdoctoral fellowship. We are grateful to H. N. Lim for providing some rhodium catalysts and K.-Y. Yoon for X-ray analysis. V. Rawal, Z. Dong and J. Xie are thanked for helpful suggestions. We thank Z. Rong for assistance with using the autoclave and Y. Xu for checking the experimental procedures.

Author information

Affiliations

Authors

Contributions

J.Z. and G.D. conceived and designed the experiments. J.Z. performed the experiments. J.W. performed the DFT calculation. J.Z., J.W. and G.D. co-wrote the manuscript.

Corresponding author

Correspondence to Guangbin Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Characterization data, supplementary experimental data, synthetic procedures and supplementary figures

Crystallographic data

CIF for compound 2z; CCDC reference: 1848268

Crystallographic data

CIF for compound [Rh(2al)Cl]2; CCDC reference: 1848266

Crystallographic data

CIF for compound 8g; CCDC reference: 1848267

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Wang, J. & Dong, G. Catalytic activation of unstrained C(aryl)–C(aryl) bonds in 2,2′-biphenols. Nature Chem 11, 45–51 (2019). https://doi.org/10.1038/s41557-018-0157-x

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing