Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A crystalline monosubstituted carbene

Abstract

By flanking a carbene carbon with two substituents, it is possible to synthesize persistent triplet carbenes and isolable singlet carbenes. Isolable singlet carbenes are among the most powerful tools in chemistry, and they have even found medicinal and materials science applications. Between the rich chemistry of disubstituted carbenes and the transient parent carbene are the monosubstituted carbenes that, so far, have only been observed in matrices at very low temperatures of just a few K. Herein, we describe the synthesis of a crystalline monosubstituted carbene. The key for isolating such a species was to design the correct substituent, namely a benzo[c]pyrrolidino heterocycle, which can single-handedly tame the intrinsic tendency of carbenes towards dimerization. The π-donor ability of the nitrogen atom, coupled with the steric bulk of chemically inert substituents at the two adjacent quaternary carbons, make these scaffolds very attractive for the isolation of a variety of other hitherto elusive electron-deficient species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Carbenes and isolated group 15 analogues.
Fig. 2: Synthesis of the protonated carbene precursors 2a–c.
Fig. 3: Deprotonation of aldiminium salts 2a–c.
Fig. 4: Solid-state structures of 4b and 3c.
Fig. 5: Theoretical and experimental study of the electronic nature of 3c.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre under deposition numbers CCDC 1814366 (2c), 1814371 (3c), 1814368 ((3c)Rh(cod)Cl), 1814370 (4b), 1835936 (5), 1814367 (7), 1814369 (8), 1814372 (9) and 1835937 (10). Copies of the data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif. All other data supporting the findings of this study are available within the article and its Supplementary Information, or from the corresponding author upon reasonable request.

References

  1. Hollis, J. M., Jewell, P. R. & Lovas, F. J. Confirmation of interstellar methylene. Astrophys. J. 438, 259–264 (1995).

    Article  CAS  Google Scholar 

  2. Hirai, K., Itoh, T. & Tomioka, H. Persistent triplet carbenes. Chem. Rev. 109, 3275–3332 (2009).

    Article  CAS  Google Scholar 

  3. Díez-González, S. N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools (Royal Society of Chemistry, Cambridge, 2016).

  4. Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. An overview of N-heterocyclic carbenes. Nature 510, 485–496 (2014).

    Article  CAS  Google Scholar 

  5. Mercs, L. & Albrecht, M. Beyond catalysis: N-heterocyclic carbene complexes as components for medicinal, luminescent, and functional materials applications. Chem. Soc. Rev. 39, 1903–1912 (2010).

    Article  CAS  Google Scholar 

  6. Visbal, R. & Gimeno, C. N-heterocyclic carbene metal complexes: photoluminescence and applications. Chem. Soc. Rev. 43, 3551–3574 (2014).

    Article  CAS  Google Scholar 

  7. Hindi, K. M., Panzner, M. J., Tessier, C. A., Cannon, C. L. & Youngs, W. J. The medicinal applications of imidazolium carbene–metal complexes. Chem. Rev. 109, 3859–3884 (2009).

    Article  CAS  Google Scholar 

  8. Zhukhovitskiy, A. V., MacLeod, M. J. & Johnson, J. A. Carbene ligands in surface chemistry: from stabilization of discrete elemental allotropes to modification of nanoscale and bulk substrates. Chem. Rev. 115, 11503–11532 (2015).

    Article  CAS  Google Scholar 

  9. Boydston, A. J., Williams, K. A. & Bielawski, C. W. A modular approach to main-chain organometallic polymers. J. Am. Chem. Soc. 127, 12496–12497 (2005).

    Article  CAS  Google Scholar 

  10. Kamplain, J. W. & Bielawski, C. W. Dynamic covalent polymers based upon carbene dimerization. Chem. Commun. 2006, 1727–1729 (2006).

    Article  Google Scholar 

  11. Boydston, A. J. & Bielawski, C. W. Bis(imidazolylidene)s as modular building blocks for monomeric and macromolecular organometallic materials. Dalton Trans. 2006, 4073–4077 (2006).

    Article  Google Scholar 

  12. Eckhardt, A. K. & Schreiner, P. R. Spectroscopic evidence for aminomethylene (H–C̈–NH2)—the simplest amino carbene. Angew. Chem. Int. Ed. 57, 5248–5252 (2018).

    Article  CAS  Google Scholar 

  13. Merceron, N., Miqueu, K., Baceiredo, A. & Bertrand, G. Stable (amino)(phosphino)carbenes: difunctional molecules. J. Am. Chem. Soc. 124, 6806–6807 (2002).

    Article  CAS  Google Scholar 

  14. Lavallo, V. et al. Synthesis, reactivity, and ligand properties of a stable alkyl carbene. J. Am. Chem. Soc. 126, 8670–8671 (2004).

    Article  CAS  Google Scholar 

  15. Melaimi, M., Jazzar, R., Soleilhavoup, M. & Bertrand, G. Cyclic (alkyl)(amino)carbenes (CAACs): recent developments. Angew. Chem. Int. Ed. 56, 10046–10068 (2017).

    Article  CAS  Google Scholar 

  16. Lavallo, V., Canac, Y., Prasang, C., Donnadieu, B. & Bertrand, G. Stable cyclic (alkyl)(amino)carbenes as rigid or flexible, bulky, electron-rich ligands for transition metal catalysts: a quaternary carbon makes the difference! Angew. Chem. Int. Ed. 44, 5705–5709 (2005).

    Article  CAS  Google Scholar 

  17. Buron, C., Gornitzka, H., Romanenko, V. & Bertrand, G. Stable versions of transient push–pull carbenes: extending lifetimes from nanoseconds to weeks. Science 288, 834–836 (2000).

    Article  CAS  Google Scholar 

  18. Dielmann, F. et al. A crystalline singlet phosphinonitrene: a nitrogen atom–transfer agent. Science 337, 1526–1528 (2012).

    Article  CAS  Google Scholar 

  19. Liu, L., Ruiz, D. A., Munz, D. & Bertrand, G. A singlet phosphinidene stable at room temperature. Chem 1, 147–153 (2016).

    Article  CAS  Google Scholar 

  20. Hinsberg, W. D. & Dervan, P. B. Synthesis and direct spectroscopic observation of a 1,1-dialkyldiazene. Infrared and electronic spectrum of N-(2,2,6,6-tetramethylpiperidyl)nitrene. J. Am. Chem. Soc. 100, 1608–1610 (1978).

    Article  CAS  Google Scholar 

  21. Schultz, P. G. & Dervan, P. B. Synthesis and direct spectroscopic observation of N-(2,2,5,5-tetramethylpyrrolidinyl)nitrene. Comparison of five- and six-membered cyclic 1,1-dialkyldiazenes. J. Am. Chem. Soc. 102, 878–880 (1980).

    Article  CAS  Google Scholar 

  22. Dervan, P. B., Squillacote, M. E., Lahti, P. M., Sylwester, A. P. & Roberts, J. D. Nitrogen-15 NMR spectrum of a 1,1-diazene. N-(2,2,6,6-tetramethylpiperidyl)nitrene. J. Am. Chem. Soc. 103, 1120–1122 (1981).

    Article  CAS  Google Scholar 

  23. Hinsberg, W. D., Schultz, P. G. & Dervan, P. B. Direct studies of 1,1-diazenes. Syntheses, infrared and electronic spectra, and kinetics of the thermal decomposition of N-(2,2,6,6-tetramethylpiperidyl)nitrene and N-(2,2,5,5-tetramethylpyrrolidyl)nitrene. J. Am. Chem. Soc. 104, 766–773 (1982).

    Article  CAS  Google Scholar 

  24. Heidenbluth, K. & Scheffler, R. Isoindoline. 1. Synthese 1,1,2,3,3-pentasubstituierter isoindoline. J. Prakt. Chem. 23, 59–70 (1964).

    Article  CAS  Google Scholar 

  25. Chan, K. S., Li, X. Z. & Lee, S. Y. Ligand-enhanced aliphatic carbon–carbon bond activation of nitroxides by rhodium(ii) porphyrin. Organometallics 29, 2850–2856 (2010).

    Article  CAS  Google Scholar 

  26. Tapu, D., Dixon, D. A. & Roe, C. 13C NMR spectroscopy of “Arduengo-type” carbenes and their derivatives. Chem. Rev. 109, 3385–3407 (2009).

    Article  CAS  Google Scholar 

  27. Alder, R. W., Allen, P. R., Murray, M. & Orpen, A. G. Bis(diisopropylamino)carbene. Angew. Chem. Int. Ed. 35, 1121–1123 (1996).

    Article  CAS  Google Scholar 

  28. Dröge, T. & Glorius, F. The measure of all rings—N-hetrocyclic carbenes. Angew. Chem. Int. Ed. 49, 6940–6952 (2010).

    Article  Google Scholar 

  29. Hudnall, T. W. & Bielawski, C. W. An N,N′-diamidocarbene: studies in C–H insertion, reversible carbonylation, and transition-metal coordination chemistry. J. Am. Chem. Soc. 131, 16039–16041 (2009).

    Article  CAS  Google Scholar 

  30. Moerdyk, J. P., Schilter, D. & Bielawski, C. W. N,N′-diamidocarbenes: isolable divalent carbons with bona fide carbene reactivity. Acc. Chem. Res. 49, 1458–1468 (2016).

    Article  CAS  Google Scholar 

  31. Liske, A., Verlinden, K., Buhl, H., Schaper, K. & Ganter, C. Determining the π-acceptor properties of N-heterocyclic carbenes by measuring the 77Se NMR chemical shifts of their selenium adducts. Organometallics 32, 5269–5272 (2013).

    Article  CAS  Google Scholar 

  32. Back, O., Henry-Ellinger, M., Martin, C. D., Martin, D. & Bertrand, G. 31P NMR chemical shifts of carbene–phosphinidene adducts as an indicator of the π-accepting properties of carbenes. Angew. Chem. Int. Ed. 52, 2939–2943 (2013).

    Article  CAS  Google Scholar 

  33. Rodrigues, R. R., Dorsey, C. L., Arceneaux, C. A. & Hudnall, T. W. Phosphaalkene vs. phosphinidene: the nature of the P–C bond in carbonyl-decorated carbene → PPh adducts. Chem. Commun. 50, 162–164 (2014).

    Article  CAS  Google Scholar 

  34. Moerdyk, J. P. & Bielawski, C. W. Diamidocarbenes as versatile and reversible [2 + 1] cycloaddition reagents. Nat. Chem. 4, 275–280 (2012).

    Article  CAS  Google Scholar 

  35. Turner, Z. R. Chemically non‐innocent cyclic (alkyl)(amino)carbenes: ligand rearrangement, C–H and C–F bond activation. Chem. Eur. J. 22, 11461–11468 (2016).

    Article  CAS  Google Scholar 

  36. Moss, R. A. Carbenic selectivity in cyclopropanation reactions. Acc. Chem. Res. 13, 15–21 (1980).

    Article  Google Scholar 

  37. Igau, A., Grutzmacher, H., Baceiredo, A. & Bertrand, G. Analogous α,α′-bis-carbenoid, triply bonded species: synthesis of a stable λ3-phosphino carbene-λ5-phosphaacetylene. J. Am. Chem. Soc. 110, 6463–6466 (1988).

    Article  CAS  Google Scholar 

  38. Arduengo, A. J. III, Harlow, R. L. & Kline, M. A stable crystalline carbene. J. Am. Chem. Soc. 113, 361–363 (1991).

    Article  CAS  Google Scholar 

  39. Avila, L. Z., Loo, S. H. & Frost, J. W. Chemical and mutagenic analysis of aminomethylphosphonate biodegradation. J. Am. Chem. Soc. 109, 6758–6764 (1987).

    Article  CAS  Google Scholar 

  40. Kehlbeck, J. D. et al. A practical and efficient synthesis of 5′-substituted m-terphenyls. Synthesis 2007, 1979–1983 (2007).

    Article  Google Scholar 

  41. Sevov, C. S. & Hartwig, J. F. Iridium-catalyzed oxidative olefination of furans with unactivated alkenes. J. Am. Chem. Soc. 136, 10625–10631 (2014).

    Article  CAS  Google Scholar 

  42. Gray, I. P., Bhattacharyya, P., Slawin, A. M. Z. & Woollins, J. D. A new synthesis of (PhPSe2)2 (Woollins reagent) and its use in the synthesis of novel P–Se heterocycles. Chem. Eur. J. 11, 6221–6227 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to the NSF (CHE-1661518) for financial support of this work, and the Japan Society for the Promotion of Science for a Postdoctoral Fellowship for Study Abroad (to R.N.). We are grateful to the W. M. Keck Foundation for funding the Keck II computer centre, and A. L. Rheingold, M. Gembicky and C. E. Moore (X-ray diffraction).

Author information

Authors and Affiliations

Authors

Contributions

R.N. and G.B. devised the project. All authors discussed the results and wrote the paper. R.N. performed the experimental and computational work. R.J. performed the X-ray crystallographic analyses.

Corresponding author

Correspondence to Guy Bertrand.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Synthetic procedures, physical and spectroscopic properties for all compounds described in the manuscript, a copy of their NMR spectra, crystallographic data and structure refinements for compounds 2c, 3c, (3c)Rh(cod)Cl, 4b, 5, 7, 8, 9 and 10, and the Cartesian coordinates of computational structures

Crystallographic data

CIF for compound 2c; CCDC reference: 1814366

Crystallographic data

CIF for compound 3c; CCDC reference: 1814371

Crystallographic data

CIF for compound (3c)Rh(cod)Cl; CCDC reference: 1814368

Crystallographic data

CIF for compound 4b; CCDC reference: 1814370

Crystallographic data

CIF for compound 5; CCDC reference: 1835936

Crystallographic data

CIF for compound 7; CCDC reference: 1814367

Crystallographic data

CIF for compound 8; CCDC reference: 1814369

Crystallographic data

CIF for compound 9; CCDC reference: 1814372

Crystallographic data

CIF for compound 10; CCDC reference: 1835937

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakano, R., Jazzar, R. & Bertrand, G. A crystalline monosubstituted carbene. Nature Chem 10, 1196–1200 (2018). https://doi.org/10.1038/s41557-018-0153-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0153-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing