Cavitation energies can outperform dispersion interactions

Abstract

The accurate dissection of binding energies into their microscopic components is challenging, especially in solution. Here we study the binding of noble gases (He–Xe) with the macrocyclic receptor cucurbit[5]uril in water by displacement of methane and ethane as 1H NMR probes. We dissect the hydration free energies of the noble gases into an attractive dispersive component and a repulsive one for formation of a cavity in water. This allows us to identify the contributions to host–guest binding and to conclude that the binding process is driven by differential cavitation energies rather than dispersion interactions. The free energy required to create a cavity to accept the noble gas inside the cucurbit[5]uril is much lower than that to create a similarly sized cavity in bulk water. The recovery of the latter cavitation energy drives the overall process, which has implications for the refinement of gas-storage materials and the understanding of biological receptors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Host CB5, noble gas guests and host–guest complex formation.
Fig. 2: Experimental data for binding of noble gases to CB5.

Data availability

All data supporting the findings of this study are available within the Article and its Supplementary Information and from the corresponding authors upon reasonable request.

Change history

  • 16 October 2018

    In the version of this Article originally published online, Fig. 2e was missing its data points; this has now been corrected in all versions of the Article.

References

  1. 1.

    Shabtai, E. et al. 3He NMR of He@C60 6− and He@C70 6 . New records for the most shielded and the most deshielded 3He inside a fullerene. J. Am. Chem. Soc. 120, 6389–6393 (1998).

    CAS  Article  Google Scholar 

  2. 2.

    Tilton, R. F., Kuntz, I. D. & Petsko, G. A. Cavities in proteins: structure of a metmyoglobin xenon complex solved to 1.9 Å. Biochemistry 23, 2849–2857 (1984).

    CAS  Article  Google Scholar 

  3. 3.

    Hill, P. A., Wei, Q., Eckenhoff, R. G. & Dmochowski, I. J. Thermodynamics of xenon binding to cryptophane in water and human plasma. J. Am. Chem. Soc. 129, 9262–9263 (2007).

    CAS  Article  Google Scholar 

  4. 4.

    Jacobson, D. R. et al. Measurement of radon and xenon binding to a cryptophane molecular host. Proc. Natl Acad. Sci. USA 108, 10969–10973 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    Grimme, S. Supramolecular binding thermodynamics by dispersion-corrected density functional theory. Chem. Eur. J. 18, 9955–9964 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    Duignan, T. T., Parsons, D. F. & Ninham, B. W. A continuum solvent model of the multipolar dispersion solvation energy. J. Phys. Chem. B 117, 9412–9420 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    Duignan, T. T., Parsons, D. F. & Ninham, B. W. A continuum model of solvation energies including electrostatic, dispersion, and cavity contributions. J. Phys. Chem. B 117, 9421–9429 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    Muddana, H. S., Fenley, A. T., Mobley, D. L. & Gilson, M. K. The SAMPL4 host–guest blind prediction challenge: an overview. J. Comput. Aided Mol. Des. 28, 305–317 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    Henriksen, N. M., Fenley, A. T. & Gilson, M. K. Computational calorimetry: high-precision calculation of host–guest binding thermodynamics. J. Chem. Theory Comput. 11, 4377–4394 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Sure, R. & Grimme, S. Comprehensive benchmark of association (free) energies of realistic host–guest complexes. J. Chem. Theory Comput. 11, 3785–3801 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Hostaš, J. et al. A nexus between theory and experiment: non-empirical quantum mechanical computational methodology applied to cucurbit[n]urilguest binding interactions. Chem. Eur. J. 22, 17226–17238 (2016).

    Article  Google Scholar 

  12. 12.

    Hunter, C. A. Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox. Angew. Chem. Int. Ed. 43, 5310–5324 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    Yang, L., Adam, C., Nichol, G. S. & Cockroft, S. L. How much do van der Waals dispersion forces contribute to molecular recognition in solution? Nat. Chem. 5, 1006–1010 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    Shimizu, K. D. Intermolecular forces: a solution to dispersion interactions. Nat. Chem. 5, 989–990 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    Adam, C., Yang, L. & Cockroft, S. L. Partitioning solvophobic and dispersion forces in alkyl and perfluoroalkyl cohesion. Angew. Chem. Int. Ed. 54, 1164–1167 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    Yang, L., Adam, C. & Cockroft, S. L. Quantifying solvophobic effects in nonpolar cohesive interactions. J. Am. Chem. Soc. 137, 10084–10087 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Hwang, J. et al. How important are dispersion interactions to the strength of aromatic stacking interactions in solution? Chem. Sci. 6, 4358–4364 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Yang, L., Brazier, J. B., Hubbard, T. A., Rogers, D. M. & Cockroft, S. L. Can dispersion forces govern aromatic stacking in an organic solvent? Angew. Chem. Int. Ed. 55, 912–916 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Hwang, J., Li, P., Smith, M. D. & Shimizu, K. D. Distance‐dependent attractive and repulsive interactions of bulky alkyl groups. Angew. Chem. Int. Ed. 55, 8086–8089 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Schneider, H.-J. Dispersive interactions in solution complexes. Acc. Chem. Res. 48, 1815–1822 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    Wagner, J. P. & Schreiner, P. R. London dispersion in molecular chemistry—reconsidering steric effects. Angew. Chem. Int. Ed. 54, 12274–12296 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Barrow, S. J., Kasera, S., Rowland, M. J., del Barrio, J. & Scherman, O. A. Cucurbituril-based molecular recognition. Chem. Rev. 115, 12320–12406 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Nau, W. M., Florea, M. & Assaf, K. I. Deep inside cucurbiturils: physical properties and volumes of their inner cavity determine the hydrophobic driving force for host–guest complexation. Isr. J. Chem. 51, 559–577 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    Lagona, J., Mukhopadhyay, P., Chakrabarti, S. & Isaacs, L. The cucurbit[n]uril family. Angew. Chem. Int. Ed. 44, 4844–4870 (2005).

    CAS  Article  Google Scholar 

  25. 25.

    Kim, J. et al. New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J. Am. Chem. Soc. 122, 540–541 (2000).

    CAS  Article  Google Scholar 

  26. 26.

    Miyahara, Y., Abe, K. & Inazu, T. ‘Molecular’ molecular sieves: lid-free decamethylcucurbit[5]uril absorbs and desorbs gases selectively. Angew. Chem. Int. Ed. 41, 3020–3023 (2002).

    CAS  Article  Google Scholar 

  27. 27.

    Nguyen, B. T. & Anslyn, E. V. Indicator-displacement assays. Coord. Chem. Rev. 250, 3118–3127 (2006).

    CAS  Article  Google Scholar 

  28. 28.

    Assaf, K. I. & Nau, W. M. Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 44, 394–418 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    Florea, M. & Nau, W. M. Strong binding of hydrocarbons to cucurbituril probed by fluorescent dye displacement: a supramolecular gas-sensing ensemble. Angew. Chem. Int. Ed. 50, 9338–9342 (2011).

    CAS  Article  Google Scholar 

  30. 30.

    Kumar, C. P., Wu, F., Woodward, C. E. & Day, A. I. The influence of equatorial substitution and K+ ion concentration: an encapsulation study of CH4, CH3F, CH3Cl, CH2F2 and CF4, in Q[5], CyP5Q[5] and a CyP5Q[5]-carboxylate derivative. Supramol. Chem. 26, 670–676 (2014).

    CAS  Article  Google Scholar 

  31. 31.

    Ustrnul, L., Kulhanek, P., Lizal, T. & Sindelar, V. Pressocucurbit[5]uril. Org. Lett. 17, 1022–1025 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    Mecozzi, S. & Rebek, J. The 55% solution: a formula for molecular recognition in the liquid state. Chem. Eur. J. 4, 1016–1022 (1998).

    CAS  Article  Google Scholar 

  33. 33.

    Qvist, J., Davidovic, M., Hamelberg, D. & Halle, B. A dry ligand-binding cavity in a solvated protein. Proc. Natl Acad. Sci. USA 105, 6296–6301 (2008).

    CAS  Article  Google Scholar 

  34. 34.

    Rosenzweig, A. C., Frederick, C. A., Lippard, S. J. & Nordlund, P. Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature 366, 537–543 (1993).

    CAS  Article  Google Scholar 

  35. 35.

    Quillin, M. L., Breyer, W. A., Griswold, I. J. & Matthews, B. W. Size versus polarizability in protein–ligand interactions: binding of noble gases within engineered cavities in phage T4 lysozyme1. J. Mol. Biol. 302, 955–977 (2000).

    CAS  Article  Google Scholar 

  36. 36.

    Yang, C. et al. Fluorous metal–organic frameworks with superior adsorption and hydrophobic properties toward oil spill cleanup and hydrocarbon storage. J. Am. Chem. Soc. 133, 18094–18097 (2011).

    CAS  Article  Google Scholar 

  37. 37.

    Biedermann, F., Nau, W. M. & Schneider, H.-J. The hydrophobic effect revisited—studies with supramolecular complexes imply high-energy water as a noncovalent driving force. Angew. Chem. Int. Ed. 53, 11158–11171 (2014).

    CAS  Article  Google Scholar 

  38. 38.

    Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005).

    CAS  Article  Google Scholar 

  39. 39.

    Abraham, M. H., Whiting, G. S., Fuchs, R. & Chambers, E. J. Thermodynamics of solute transfer from water to hexadecane. J. Chem. Soc. Perkin Trans. 2, 291–300 (1990).

    Article  Google Scholar 

  40. 40.

    Assaf, K. I. & Nau, W. M. Cucurbiturils as fluorophilic receptors. Supramol. Chem. 26, 657–669 (2014).

    CAS  Article  Google Scholar 

  41. 41.

    Otto, S. The role of solvent cohesion in nonpolar solvation. Chem. Sci. 4, 2953–2959 (2013).

    CAS  Article  Google Scholar 

  42. 42.

    Biedermann, F., Uzunova, V. D., Scherman, O. A., Nau, W. M. & De Simone, A. Release of high-energy water as an essential driving force for the high-affinity binding of cucurbit[n]urils. J. Am. Chem. Soc. 134, 15318–15323 (2012).

    CAS  Article  Google Scholar 

  43. 43.

    Nguyen, C. N., Young, T. K. & Gilson, M. K. Grid inhomogeneous solvation theory: hydration structure and thermodynamics of the miniature receptor cucurbit[7]uril. J. Chem. Phys. 137, 044101 (2012).

    Article  Google Scholar 

  44. 44.

    Genheden, S., Kongsted, J., Söderhjelm, P. & Ryde, U. Nonpolar solvation free energies of protein–ligand complexes. J. Chem. Theory Comput. 6, 3558–3568 (2010).

    CAS  Article  Google Scholar 

  45. 45.

    Sheeba Jem, I. & Richard, H. H. Solvation theory to provide a molecular interpretation of the hydrophobic entropy loss of noble-gas hydration. J. Phys. Condens. Matter 22, 284108 (2010).

    Article  Google Scholar 

  46. 46.

    Liu, T. & Schneider, H.-J. Additivity and quantification of dispersive interactions—from cyclopropyl to nitro groups: measurements on porphyrin derivatives. Angew. Chem. Int. Ed. 41, 1368–1370 (2002).

    CAS  Article  Google Scholar 

  47. 47.

    Marquez, C. & Nau, W. M. Polarizabilities inside molecular containers. Angew. Chem. Int. Ed. 40, 4387–4390 (2001).

    CAS  Article  Google Scholar 

  48. 48.

    Campanell, F. C., Battino, R. & Seybold, P. G. On the role of solute polarizability in determining the solubilities of gases in liquids. J. Chem. Eng. Data 55, 37–40 (2010).

    CAS  Article  Google Scholar 

  49. 49.

    Ivanov, E. V., Lebedeva, E. J., Abrosimov, V. K. & Ivanova, N. G. Structural contribution of the effect of hydrophobic hydration of noble gases. J. Struct. Chem. 46, 253–263 (2005).

    CAS  Article  Google Scholar 

  50. 50.

    Wilhelm, E., Battino, B. & Wilcock, R. J. Low-pressure solubility of gases in liquid water. Chem. Rev. 77, 219–262 (1977).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

W.M.N. thanks A. Ben-Naim for helpful discussions, A. Barba-Bon for control experiments and the DFG (grant no. NA 681/8 within the SPP 1807 ‘Control of London dispersion interactions in molecular chemistry’) for financial support. N.V. thanks A. Mavrantonakis for helpful discussions. S.H. acknowledges support from the China Scholarship Council. F.B. thanks the DFG Emmy Noether programme (BI 1805/2-1). T.T.D. thanks D. Parsons for helpful discussions and acknowledges support from the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.

Author information

Affiliations

Authors

Contributions

F.B. initiated this project with W.M.N. The manuscript was written by S.H., F.B. and W.M.N., and commented on by all authors. All gas binding experiments by 1H NMR were conducted by S.H. and F.B. in the laboratories of W.M.N. 3He NMR experiments were carried out by R.E.H. and water-suppression NMR experiments were carried out by A.D.S. Quantum-chemical calculations were carried out by N.V., L.Z. and T.H. and CSM–D calculations by T.T.D.

Corresponding authors

Correspondence to Frank Biedermann or Nina Vankova or Thomas Heine or Timothy T. Duignan or Werner M. Nau.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Experimental section; Supplementary computations; Supplementary Figures 1–10

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, S., Biedermann, F., Vankova, N. et al. Cavitation energies can outperform dispersion interactions. Nature Chem 10, 1252–1257 (2018). https://doi.org/10.1038/s41557-018-0146-0

Download citation

Further reading