Catalytic dehydrogenative decarboxyolefination of carboxylic acids

Abstract

Alkenes are among the most versatile building blocks and are widely used for the production of polymers, detergents and synthetic lubricants. Currently, alkenes are sourced from petroleum feedstocks such as naphtha. In light of the necessity to invent sustainable production methods, multiple approaches to making alkenes from abundant fatty acids have been evaluated. However, all attempts so far have required at least one stoichiometric additive, which is an obstruction for applications at larger scales. Here, we report an approach to making olefins from carboxylic acids, in which every additional reaction constituent can be used as a catalyst. We show how abundant fatty acids can be converted to alpha-olefins, and expand the method to include structurally complex carboxylic acids, giving access to synthetically versatile intermediates. Our approach is enabled by the cooperative interplay between a cobalt catalyst, which functions as a proton reduction catalyst, and a photoredox catalyst, which mediates oxidative decarboxylation; coupling both processes enables catalytic conversion of carboxylic acids to olefins.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Design of catalytic dehydrogenative decarboxyolefination of carboxylic acids.
Fig. 2: Mechanism experiments.

Data availability

Crystallographic data for structure 1 reported in this article have been deposited at the Cambridge Crystallographic Data Centre under deposition number 1831368. Copies of the data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif. All other data supporting the findings of this study are available within the article and its Supplementary Information, or from the corresponding author upon reasonable request.

References

  1. 1.

    Lappin, G. R. & Sauer, J. D. Alpha Olefins Applications Handbook (Marcel Dekker, New York, 1989).

  2. 2.

    Grubbs, R. H. in Handbook of Metathesis Vol. 2 (ed. Grubbs, R. H.) 1–4 (Wiley, Weinheim, 2003).

  3. 3.

    Horváth, I. T. Introduction: sustainable chemistry. Chem. Rev. 118, 369–371 (2018).

    Article  Google Scholar 

  4. 4.

    Miller, J. A., Nelson, J. A. & Byrne, M. P. A highly catalytic and selective conversion of carboxylic acids to 1-alkenes of one less carbon atom. J. Org. Chem. 58, 18–20 (1993).

    CAS  Article  Google Scholar 

  5. 5.

    Gooßen, L. J. & Rodríguez, N. A mild and efficient protocol for the conversion of carboxylic acids to olefins by a catalytic decarbonylative elimination reaction. Chem. Commun. 724–725 (2004)..

  6. 6.

    Maetani, S., Fukuyama, T., Suzuki, N., Ishihara, D. & Ryu, I. Efficient iridium-catalyzed decarbonylation reaction of aliphatic carboxylic acids leading to internal or terminal alkenes. Organometallics 30, 1389–1394 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    Maetani, S., Fukuyama, T., Suzuki, N., Ishiharab, D. & Ryu, I. Iron-catalyzed decarbonylation reaction of aliphatic carboxylic acids leading to α-olefins. Chem. Commun. 48, 2552–2554 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    John, A. et al. Nickel catalysts for the dehydrative decarbonylation of carboxylic acids to alkenes. Organometallics 35, 2391–2400 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    John, A., Hillmyer, M. A. & Tolman, W. B. Anhydride-additive-free nickel-catalyzed deoxygenation of carboxylic acids to olefins. Organometallics 36, 506–509 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    Chatterjee, A. & Jensen, V. R. A heterogeneous catalyst for the transformation of fatty acids to α-olefins. ACS Catal. 7, 2543–2547 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Edwards, J. T. et al. Decarboxylative alkenylation. Nature 545, 213–218 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    Li, C. et al. Decarboxylative borylation. Science 356, eaam7355 (2017).

    Article  Google Scholar 

  13. 13.

    Fawcett, A. et al. Photoinduced decarboxylative borylation of carboxylic acids. Science 357, 283–286 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Tlahuext-Aca, A., Candish, L., Garza-Sanchez, R. A. & Glorius, F. Decarboxylative olefination of activated aliphatic acids enabled by dual organophotoredox/copper catalysis. ACS Catal. 8, 1715–1719 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    Grant, J. L., Hsieh, C. H. & Makris, T. M. Decarboxylation of fatty acids to terminal alkenes by cytochrome P450 compound I. J. Am. Chem. Soc. 137, 4940–4943 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    Dennig, A. et al. Oxidative decarboxylation of short-chain fatty acids to 1-alkenes. Angew. Chem. Int. Ed. 54, 8819–8822 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Bacha, J. D. & Kochi, J. K. Alkenes from acids by oxidative decarboxylation. Tetrahedron 24, 2215–2226 (1968).

    CAS  Article  Google Scholar 

  18. 18.

    Lande, S. S. & Kochi, J. K. Formation and oxidation of alkyl radicals by cobalt (iii) complexes. J. Am. Chem. Soc. 90, 5196–5207 (1968).

    CAS  Article  Google Scholar 

  19. 19.

    Anderson, J. M. & Kochi, J. K. Silver(i)-catalyzed oxidative decarboxylation of acids by peroxydisulfate. The role of silver(ii). J. Am. Chem. Soc. 92, 1651–1659 (1970).

    CAS  Article  Google Scholar 

  20. 20.

    Du, P. & Eisenberg, R. Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges. Energy Environ. Sci. 5, 6012–6021 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    Artero, V., Chavarot-Kerlidou, M. & Fontecave, M. Splitting water with cobalt. Angew. Chem. Int. Ed. 50, 7238–7266 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    Dempsey, J. L., Brunschwig, B. S., Winkler, J. R. & Gray, H. B. Hydrogen evolution catalyzed by cobaloximes. Acc. Chem. Res. 42, 1995–2004 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    West, J. G., Huang, D. & Sorensen, E. J. Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis. Nat. Commun. 6, 10093 (2015).

    Article  Google Scholar 

  24. 24.

    Zheng, Y.-W. et al. Photocatalytic hydrogen-evolution cross-couplings: benzene C–H amination and hydroxylation. J. Am. Chem. Soc. 138, 10080–10083 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Zhang, G. et al. Anti-Markovnikov oxidation of β-alkyl styrenes with H2O as the terminal oxidant. J. Am. Chem. Soc. 138, 12037–12040 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Niu, L. et al. Photo-induced oxidant-free oxidative C–H/N–H cross-coupling between arenes and azoles. Nat. Commun. 8, 14226 (2017).

    Article  Google Scholar 

  27. 27.

    Fontecilla-Camps, J. C., Volbeda, A., Cavazza, C. & Nicolet, Y. Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem. Rev. 107, 4273–4303 (2007).

    CAS  Article  Google Scholar 

  28. 28.

    Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    CAS  Article  Google Scholar 

  29. 29.

    Pattenden, G. Cobalt-mediated radical reactions in organic synthesis. Chem. Soc. Rev. 17, 361–382 (1988).

    CAS  Article  Google Scholar 

  30. 30.

    Johnston, C. P., Smith, R. T., Allmendinger, S. & MacMillan, D. W. C. Metallaphotoredox-catalysed sp 3sp 3 cross-coupling of carboxylic acids with alkyl halides. Nature 536, 322–325 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    Bloom, S. et al. Decarboxylative alkylation for site-selective bioconjugation of native proteins via oxidation potentials. Nat. Chem. 10, 205–211 (2018).

    CAS  Article  Google Scholar 

  32. 32.

    Griffin, J. D., Zeller, M. A. & Nicewicz, D. A. Hydrodecarboxylation of carboxylic and malonic acid derivatives via organic photoredox catalysis: substrate scope and mechanistic insight. J. Am. Chem. Soc. 137, 11340–11348 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    Schrauzer, G. N., Sibert, J. W. & Windgassen, R. J. Photochemical and thermal cobalt–carbon bond cleavage in alkylcobalamins and related organometallic compounds. A comparative study. J. Am. Chem. Soc. 90, 6681–6688 (1968).

    CAS  Article  Google Scholar 

  34. 34.

    Shen, R. & Porco, J. A. Jr. Synthesis of enamides related to the salicylate antitumor macrolides using copper-mediated vinylic substitution. Org. Lett. 2, 1333–1336 (2000).

    CAS  Article  Google Scholar 

  35. 35.

    Jiang, L., Job, G. E., Klapars, A. & Buchwald, S. L. Copper-catalyzed coupling of amides and carbamates with vinyl halides. Org. Lett. 5, 3667–3669 (2003).

    CAS  Article  Google Scholar 

  36. 36.

    Grubbs, R. H. Handbook of Metathesis (Wiley, Weinheim, 2003).

  37. 37.

    Kolb, H. C., VanNieuwenhze, M. S. & Sharpless, K. B. Catalytic asymmetric dihydroxylation. Chem. Rev. 94, 2483–2547 (1994).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank A. Deege, M. S. Sterling and H. Hinrichs (Max-Planck-Institut für Kohlenforschung) for liquid chromatography analysis, and G. Breitenbruch (Max-Planck-Institut für Kohlenforschung) for HPLC purification. We thank J. Rust and H. Lee (Max-Planck-Institut für Kohlenforschung) for X-ray crystallographic analysis, and M. Blumenthal, D. Kampen, S. Marcus, D. Richter and D. Margold (Max-Planck-Institut für Kohlenforschung) for mass spectrometry. We thank S. Ruthe (Max-Planck-Institut für Kohlenforschung) for gas chromatography analysis. We thank W. S. Ham (Max-Planck-Institut für Kohlenforschung) for help with quantum yield measurements. We thank H. Zhou (Max-Planck-Institut für Kohlenforschung) for help with enantiomertic excess measurements.

Author information

Affiliations

Authors

Contributions

X.S. developed the conceptual approach to the project and optimized the dehydrogenative decarboxyolefination reaction. X.S. and J.C. synthesized the starting materials. X.S. explored the substrate scope and conducted the mechanistic studies. X.S. and T.R. analysed the data and wrote the manuscript. X.S., J.C. and T.R. prepared the Supplementary Information. T.R. directed the project.

Corresponding author

Correspondence to Tobias Ritter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary experimental data, synthetic procedures, chemical compound characterization data and supplementary figures

Crystallographic data

CIF for compound 1; CCDC reference: 1831368

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Chen, J. & Ritter, T. Catalytic dehydrogenative decarboxyolefination of carboxylic acids. Nature Chem 10, 1229–1233 (2018). https://doi.org/10.1038/s41557-018-0142-4

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing