Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gas-phase sugar formation using hydroxymethylene as the reactive formaldehyde isomer

Abstract

Carbohydrates (CH2O)n are the formal adducts of carbon (atoms) to water with a repeating unit that structurally resembles H–C̈–OH (hydroxymethylene). Although hydroxymethylene has been suggested as a building block for sugar formation, it is a reactive species that had escaped detection until recently. Here we demonstrate that formaldehyde reacts with its isomer hydroxymethylene to give glycolaldehyde in a nearly barrierless reaction. This carbonyl–ene-type transformation operates in the absence of base and solvent at cryogenic temperatures similar to those found in extraterrestrial environments or interstellar clouds. Hydroxymethylene acts as a building block for an iterative sugar synthesis, as we demonstrate through the formation of the triose glyceraldehyde. The thermodynamically preferred ketose dihydroxyacetone does not form, and the formation of further branched sugars in the iterative synthesis presented here is unlikely. The results therefore provide a link between the well-known formose (Butlerow) reaction and sugar formation under non-aqueous conditions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Mechanistic hypotheses related to sugar formation from formaldehyde.
Fig. 2: Mechanistic hypothesis for the uncatalysed ‘carbonyl–ene’ reaction.
Fig. 3: NMR spectra of products resulting from the pyrolysis of glyoxylic acid.
Fig. 4: Reaction of methylhydroxycarbene (3b) with formaldehyde (2a) to hydroxyacetone (1c).
Fig. 5: Reaction mechanism of the carbonyl–ene-type reaction.

References

  1. 1.

    Breslow, R. On the mechanism of the formose reaction. Tetrahedron Lett. 1, 22–26 (1959).

    Article  Google Scholar 

  2. 2.

    Butlerow, A. Bildung einer zuckerartigen Substanz durch Synthese. Justus Liebigs Ann. Chem. 120, 295–298 (1861).

    Article  Google Scholar 

  3. 3.

    Schwartz, A. W. & Degraaf, R. M. The prebiotic synthesis of carbohydrates—a reassessment. J. Mol. Evol. 36, 101–106 (1993).

    CAS  Article  Google Scholar 

  4. 4.

    Socha, R. F., Weiss, A. H. & Sakharov, M. M. Auto-catalysis in the formose reaction. React. Kinet. Catal. Lett. 14, 119–128 (1980).

    CAS  Article  Google Scholar 

  5. 5.

    Huskey, W. P. & Epstein, I. R. Auto-catalysis and apparent bistability in the formose reaction. J. Am. Chem. Soc. 111, 3157–3163 (1989).

    CAS  Article  Google Scholar 

  6. 6.

    Shapiro, R. Prebiotic ribose synthesis—a critical analysis. Orig. Life Evol. Biosph. 18, 71–85 (1988).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Larralde, R., Robertson, M. P. & Miller, S. L. Rates of decomposition of ribose and other sugars—implications for chemical evolution. Proc. Natl Acad. Sci. USA 92, 8158–8160 (1995).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Toxvaerd, S. The role of carbohydrates at the origin of homochirality in biosystems. Orig. Life Evol. Biosph. 43, 391–409 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Cooper, G. et al. Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature 414, 879–883 (2001).

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Kebukawa, Y., Kilcoyne, A. L. D. & Cody, G. D. Exploring the potential formation of organic solids in chondrites and comets through polymerization of interstellar formaldehyde. Astrophys. J. 771, 19 (2013).

    Article  CAS  Google Scholar 

  11. 11.

    Meinert, C. et al. Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs. Science 352, 208–212 (2016).

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Hollis, J. M., Lovas, F. J. & Jewell, P. R. Interstellar glycolaldehyde: the first sugar. Astrophys. J. 540, L107–L110 (2000).

    CAS  Article  Google Scholar 

  13. 13.

    Halfen, D. T., Apponi, A. J., Woolf, N., Polt, R. & Ziurys, L. M. A systematic study of glycolaldehyde in Sagittarius B2(N) at 2 and 3 mm: criteria for detecting large interstellar molecules. Astrophys. J. 639, 237–245 (2006).

    CAS  Article  Google Scholar 

  14. 14.

    Sutherland, J. D. & Whitfield, J. N. Prebiotic chemistry: a bioorganic perspective. Tetrahedron 53, 11493–11527 (1997).

    CAS  Article  Google Scholar 

  15. 15.

    Jortner, J. Conditions for the emergence of life on the early Earth: summary and reflections. Phil. Trans. Royal Soc. Lond. B 361, 1877–1891 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    Snyder, L. E., Buhl, D., Zuckerma., B. & Palmer, P. Microwave detection of interstellar formaldehyde. Phys. Rev. Lett. 22, 679–681 (1969).

    CAS  Article  Google Scholar 

  17. 17.

    Kebukawa, Y. & Cody, G. D. A kinetic study of the formation of organic solids from formaldehyde: implications for the origin of extraterrestrial organic solids in primitive Solar System objects. Icarus 248, 412–423 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Shigemasa, Y., Matsuda, Y., Sakazawa, C. & Matsuura, T. Formose reactions. II. Photochemical formose reaction. Bull. Chem. Soc. Jpn 50, 222–226 (1977).

    CAS  Article  Google Scholar 

  19. 19.

    Sodeau, J. R. & Lee, E. K. C. Intermediacy of hydroxymethylene (HCOH) in low-temperature matrix photochemistry of formaldehyde. Chem. Phys. Lett. 57, 71–74 (1978).

    CAS  Article  Google Scholar 

  20. 20.

    Maity, S., Kaiser, R. I. & Jones, B. M. Infrared and reflectron time-of-flight mass spectroscopic study on the synthesis of glycolaldehyde in methanol (CH3OH) and methanol-carbon monoxide (CH3OH-CO) ices exposed to ionization radiation. Faraday Discuss. 168, 485–516 (2014).

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Bennett, C. J. & Kaiser, R. I. On the formation of glycolaldehyde (HCOCH2OH) and methyl formate (HCOOCH3) in interstellar ice analogs. Astrophys. J. 661, 899–909 (2007).

    CAS  Article  Google Scholar 

  22. 22.

    Eckhardt, A. K. & Schreiner, P. R. Spectroscopic evidence for aminomethylene (H−C̈−NH2)—the simplest amino carbene. Angew. Chem. Int. Ed. 57, 5248–5252 (2018).

    CAS  Article  Google Scholar 

  23. 23.

    Schreiner, P. R. et al. Capture of hydroxymethylene and its fast disappearance through tunnelling. Nature 453, 906–909 (2008).

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Feng, R., Wesdemiotis, C. & McLafferty, F. W. Gaseous negative ions from neutral molecules and positive ions: new information for neutralization–reionization mass spectrometry. J. Am. Chem. Soc. 109, 6521–6522 (1987).

    CAS  Article  Google Scholar 

  25. 25.

    Ley, D., Gerbig, D. & Schreiner, P. R. Tunnelling control of chemical reactions—the organic chemist’s perspective. Org. Biomol. Chem. 10, 3781–3790 (2012).

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Schreiner, P. R. Tunneling control of chemical reactions: the third reactivity paradigm. J. Am. Chem. Soc. 139, 15276–15283 (2017).

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Flanagan, G., Ahmed, S. N. & Shevlin, P. B. Formation of carbohydrates in the reaction of atomic carbon with water. J. Am. Chem. Soc. 114, 3892–3896 (1992).

    CAS  Article  Google Scholar 

  28. 28.

    Schreiner, P. R. & Reisenauer, H. P. The ‘non-reaction’ of ground-state triplet carbon atoms with water revisited. ChemPhysChem 7, 880–885 (2006).

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Schreiner, P. R. et al. Methylhydroxycarbene: tunneling control of a chemical reaction. Science 332, 1300–1303 (2011).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Kemper, M. J. H., Hoeks, C. H. & Buck, H. M. A theoretical study on the reactivity and spectra of H2CO and HCOH. A dimeric model for non-zero pressure formaldehyde photochemistry. J. Chem. Phys. 74, 5744–5757 (1981).

    CAS  Article  Google Scholar 

  31. 31.

    Ahmed, S. N., McKee, M. L. & Shevlin, P. B. The unusual reactivity of hydroxymethylene. J. Am. Chem. Soc. 107, 1320–1324 (1985).

    CAS  Article  Google Scholar 

  32. 32.

    Cleaves, H. J. The prebiotic geochemistry of formaldehyde. Precamb. Res. 164, 111–118 (2008).

    CAS  Article  Google Scholar 

  33. 33.

    Pinto, J. P., Gladstone, G. R. & Yung, Y. L. Photochemical production of formaldehyde in earths primitive atmosphere. Science 210, 183–184 (1980).

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Lucchese, R. R. & Schaefer, H. F. Metal–carbene complexes and possible role of hydroxy-carbene in formaldehyde laser photochemistry. J. Am. Chem. Soc. 100, 298–299 (1978).

    CAS  Article  Google Scholar 

  35. 35.

    Hibbitts, D., Dybeck, E., Lawlor, T., Neurock, M. & Iglesia, E. Preferential activation of CO near hydrocarbon chains during Fischer–Tropsch synthesis on Ru. J. Catal. 337, 91–101 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    Deng, J. et al. Linked strategy for the production of fuels via formose reaction. Sci. Rep. 3, 1244 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Schäfer, M. et al. Hydrogen tunneling above room temperature evidenced by infrared ion spectroscopy. J. Am. Chem. Soc. 139, 5779–5786 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Breslow, R. On the mechanism of thiamine action. IV. Evidence from studies on model systems. J. Am. Chem. Soc. 80, 3719–3726 (1958).

    CAS  Article  Google Scholar 

  39. 39.

    Ritson, D. & Sutherland, J. D. Prebiotic synthesis of simple sugars by photoredox systems chemistry. Nat. Chem. 4, 895–899 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Ritson, D. J. & Sutherland, J. D. Synthesis of aldehydic ribonucleotide and amino acid precursors by photoredox chemistry. Angew. Chem. Int. Ed. 52, 5845–5847 (2013).

    CAS  Article  Google Scholar 

  41. 41.

    Paul, M. et al. Breslow intermediates from aromatic N-heterocyclic carbenes (benzimidazolin-2-ylidenes, thiazolin-2-ylidenes). Angew. Chem. Int. Ed. 57, 8310–8315 (2018).

    CAS  Article  Google Scholar 

  42. 42.

    Poust, S. et al. Mechanistic analysis of an engineered enzyme that catalyzes the formose reaction. ChemBioChem 16, 1950–1954 (2015).

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Woods, P. M. et al. On the formation of glycolaldehyde in dense molecular cores. Astrophys. J. 750, 19 (2012).

    Article  CAS  Google Scholar 

  44. 44.

    Angyal, S. J. in Glycoscience: Epimer isa tion, Isomer isa tion and rearrangement reactions of carbohydrates Vol. 215 (ed. Stütz, A. E.) 1–14 (Springer, Berlin, 2001).

  45. 45.

    Kua, J., Galloway, M. M., Millage, K. D., Avila, J. E. & De Haan, D. O. Glycolaldehyde monomer and oligomer equilibria in aqueous solution: comparing computational chemistry and NMR data. J. Phys. Chem. A 117, 2997–3008 (2013).

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Sutherland, J. D. The origin of life—out of the blue. Angew. Chem. Int. Ed. 55, 104–121 (2016).

    CAS  Article  Google Scholar 

  47. 47.

    Delidovich, I. V., Simonov, A. N., Taran, O. P. & Parmon, V. N. Catalytic formation of monosaccharides: from the formose reaction towards selective synthesis. ChemSusChem 7, 1833–1846 (2014).

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Schwartz, A. W. & Degraaf, R. M. Photoreductive formation of acetaldehyde from aqueous formaldehyde. Tetrahedron Lett. 34, 2201–2202 (1993).

    CAS  Article  Google Scholar 

  49. 49.

    Clarke, M. L. & France, M. B. The carbonyl ene reaction. Tetrahedron 64, 9003–9031 (2008).

    CAS  Article  Google Scholar 

  50. 50.

    Bourissou, D., Guerret, O., Gabbaï, F. P. & Bertrand, G. Stable carbenes. Chem. Rev. 100, 39–92 (2000).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Volkswagen Foundation (‘What is Life’ grant 92 748), the Fonds der Chemischen Industrie (doctoral fellowship to A.K.E.) and the Justus Liebig University (graduate fellowship to M.M.L.). The authors thank H. Hausmann for support with the NMR spectroscopic measurements.

Author information

Affiliations

Authors

Contributions

A.K.E. conducted all matrix isolation experiments and carried out all computations. A.K.E., M.M.L., and B.B. carried out all FP experiments. A.K.E. and R.C.W. conducted all data analysis. P.R.S. conceived the original working hypothesis. A.K.E. and P.R.S. wrote the manuscript.

Corresponding author

Correspondence to Peter R. Schreiner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–68, Supplementary Tables 1–6, Supplementary Methods, Supplementary Characterisation Data, Supplementary Computational Data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eckhardt, A.K., Linden, M.M., Wende, R.C. et al. Gas-phase sugar formation using hydroxymethylene as the reactive formaldehyde isomer. Nature Chem 10, 1141–1147 (2018). https://doi.org/10.1038/s41557-018-0128-2

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing