A fluorescent membrane tension probe

Abstract

Cells and organelles are delimited by lipid bilayers in which high deformability is essential to many cell processes, including motility, endocytosis and cell division. Membrane tension is therefore a major regulator of the cell processes that remodel membranes, albeit one that is very hard to measure in vivo. Here we show that a planarizable push–pull fluorescent probe called FliptR (fluorescent lipid tension reporter) can monitor changes in membrane tension by changing its fluorescence lifetime as a function of the twist between its fluorescent groups. The fluorescence lifetime depends linearly on membrane tension within cells, enabling an easy quantification of membrane tension by fluorescence lifetime imaging microscopy. We further show, using model membranes, that this linear dependency between lifetime of the probe and membrane tension relies on a membrane-tension-dependent lipid phase separation. We also provide calibration curves that enable accurate measurement of membrane tension using fluorescence lifetime imaging microscopy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The FliptR probe.
Fig. 2: Different FliptR lifetimes correspond to different lipid compositions in cells.
Fig. 3: Response of FliptR fluorescence lifetime to osmotic shocks on cells and GUVs.
Fig. 4: Possible structural changes of lipid bilayer membranes in response to tension reported by FliptR.
Fig. 5: Response of FliptR lifetime to membrane tension in GUVs with and without phase separation induced by micropipette aspiration.

References

  1. 1.

    Helfrich, W. Elastic properties of lipid bilayers: theory and possible experiments. Zur Naturforschung C 28, 693–703 (1973).

    CAS  Article  Google Scholar 

  2. 2.

    Soleimanpour, S. et al. Headgroup engineering in mechanosensitive membrane probes. Chem. Commun. 52, 14450–14453 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Evans, E., Heinrich, V., Ludwig, F. & Rawicz, W. Dynamic tension spectroscopy and strength of biomembranes. Biophys. J. 85, 2342–2350 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Rawicz, W., Smith, B. A., McIntosh, T. J., Simon, S. A. & Evans, E. Elasticity, strength, and water permeability of bilayers that contain raft microdomain-forming lipids. Biophys. J. 94, 4725–4736 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Lieber, A. D., Schweitzer, Y., Kozlov, M. M. & Keren, K. Front-to-rear membrane tension gradient in rapidly moving cells. Biophys. J. 108, 1599–1603 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Lieber, A. D., Yehudai-Resheff, S., Barnhart, E. L., Theriot, J. A. & Keren, K. Membrane tension in rapidly moving cells is determined by cytoskeletal forces. Curr. Biol. 23, 1409–1417 (2013).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Pontes, B. et al. Membrane tension controls adhesion positioning at the leading edge of cells. J. Cell Biol. 216, 2957–2977 (2017).

    Google Scholar 

  8. 8.

    Gauthier, N. C., Masters, T. A. & Sheetz, M. P. Mechanical feedback between membrane tension and dynamics. Trends. Cell Biol. 22, 527–535 (2012).

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Gauthier, N. C., Fardin, M. A., Roca-Cusachs, P. & Sheetz, M. P. Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading. Proc. Natl Acad. Sci. USA 108, 14467–14472 (2011).

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Masters, T. A., Pontes, B., Viasnoff, V., Li, Y. & Gauthier, N. C. Plasma membrane tension orchestrates membrane trafficking, cytoskeletal remodeling, and biochemical signaling during phagocytosis. Proc. Natl Acad. Sci. USA 110, 11875–11880 (2013).

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Sedzinski, J. et al. Polar actomyosin contractility destabilizes the position of the cytokinetic furrow. Nature 476, 462–466 (2011).

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Lafaurie-Janvore, J. et al. ESCRT-III assembly and cytokinetic abscission are induced by tension release in the intercellular bridge. Science 339, 1625–1629 (2013).

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Boulant, S., Kural, C., Zeeh, J. C., Ubelmann, F. & Kirchhausen, T. Actin dynamics counteract membrane tension during clathrin-mediated endocytosis. Nat. Cell Biol. 13, 1124–1131 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Saleem, M. et al. A balance between membrane elasticity and polymerization energy sets the shape of spherical clathrin coats. Nat. Commun. 6, 6249 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Morlot, S. et al. Membrane shape at the edge of the dynamin helix sets location and duration of the fission reaction. Cell 151, 619–629 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Wang, Y. et al. Single molecule FRET reveals pore size and opening mechanism of a mechano-sensitive ion channel. eLife 3, e01834 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Berchtold, D. et al. Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis. Nat. Cell Biol. 14, 542–547 (2012).

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Sinha, B. et al. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144, 402–413 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Gabella, C. et al. Contact angle at the leading edge controls cell protrusion rate. Curr. Biol. 24, 1126–1132 (2014).

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Warshaviak, D. T., Muellner, M. J. & Chachisvilis, M. Effect of membrane tension on the electric field and dipole potential of lipid bilayer membrane. Biochim. Biophys. Acta Biomembranes 1808, 2608–2617 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    Zhang, Y.-L., Frangos, J. A. & Chachisvilis, M. Laurdan fluorescence senses mechanical strain in the lipid bilayer membrane. Biochem. Biophys. Res. Commun. 347, 838–841 (2006).

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Templer, R. H., Castle, S. J., Rachael Curran, A., Rumbles, G. & Klug, D. R. Sensing isothermal changes in the lateral pressure in model membranes using di-pyrenyl phosphatidylcholine. Faraday Discuss. 111, 41–53 (1999).

    Article  Google Scholar 

  23. 23.

    Haidekker, M. A. & Theodorakis, E. A. Ratiometric mechanosensitive fluorescent dyes: design and applications. J. Mat. Chem. C 4, 2707–2718 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    Kuimova, M. K. et al. Imaging intracellular viscosity of a single cell during photoinduced cell death. Nat. Chem. 1, 69–73 (2009).

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Vysniauskas, A., Balaz, M., Anderson, H. L. & Kuimova, M. K. Dual mode quantitative imaging of microscopic viscosity using a conjugated porphyrin dimer. Phys. Chem. Chem. Phys. 17, 7548–7554 (2015).

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Kulkarni, R. U. & Miller, E. W. Voltage imaging: pitfalls and potential. Biochemistry 56, 5171–5177 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    M’Baye, G., Mély, Y., Duportail, G. & Klymchenko, A. S. Liquid ordered and gel phases of lipid bilayers: fluorescent probes reveal close fluidity but different hydration. Biophys. J. 95, 1217–1225 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Klymchenko, A. S. Solvatochromic and fluorogenic dyes as environment-sensitive probes: design and biological applications. Acc. Chem. Res. 50, 366–375 (2017).

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Su, D., Teoh, C. L., Wang, L., Liu, X. & Chang, Y.-T. Motion-induced change in emission (MICE) for developing fluorescent probes. Chem. Soc. Rev. 46, 4833–4844 (2017).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Sherin, P. S. et al. Visualising the membrane viscosity of porcine eye lens cells using molecular rotors. Chem. Sci. 8, 3523–3528 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Vyšniauskas, A. et al. Tuning the sensitivity of fluorescent porphyrin dimers to viscosity and temperature. Chem. Eur. J. 23, 11001–11010 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Fin, A., Vargas Jentzsch, A., Sakai, N. & Matile, S. Oligothiophene amphiphiles as planarizable and polarizable fluorescent membrane probes. Angew. Chem. Int. Ed. 51, 12736–12739 (2012).

    CAS  Article  Google Scholar 

  33. 33.

    Dal Molin, M. et al. Fluorescent flippers for mechanosensitive membrane probes. J. Am. Chem. Soc. 137, 568–571 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Rawicz, W., Olbrich, K. C., McIntosh, T., Needham, D. & Evans, E. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79, 328–339 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Verolet, Q. et al. Twisted push–pull probes with turn-on sulfide donors. Helv. Chim. Acta 100, 11564 (2017).

    Article  CAS  Google Scholar 

  36. 36.

    Neuhaus, F. et al. Correlation of surface pressure and hue of planarizable push–pull chromophores at the air/water interface. Beilstein J. Org. Chem. 13, 1099–1105 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Sampaio, J. L. et al. Membrane lipidome of an epithelial cell line. Proc. Natl Acad. Sci. USA 108, 1903–1907 (2011).

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    van Meer, G. & Simons, K. Lipid polarity and sorting in epithelial cells. J. Cell. Biochem. 36, 51–58 (1988).

    Article  PubMed  Google Scholar 

  39. 39.

    Pietuch, A., Brückner, B. R. & Janshoff, A. Membrane tension homeostasis of epithelial cells through surface area regulation in response to osmotic stress. Biochim. Biophys. Acta 1833, 712–722 (2013).

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Dai, J. W., Sheetz, M. P., Wan, X. D. & Morris, C. E. Membrane tension in swelling and shrinking molluscan neurons. J. Neurosci. 18, 6681–6692 (1998).

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Alam Shibly, S. U., Ghatak, C., Sayem Karal, M. A., Moniruzzaman, M. & Yamazaki, M. Experimental estimation of membrane tension induced by osmotic pressure. Biophys. J. 111, 2190–2201 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Gauthier, N. C., Rossier, O. M., Mathur, A., Hone, J. C. & Sheetz, M. P. Plasma membrane area increases with spread area by exocytosis of a GPI-anchored protein compartment. Mol. Biol. Cell. 20, 3261–3272 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Ben-Shaul, A. in Molecular Theory of Chain Packing, Elasticity and Lipid–Protein Interaction in Lipid Bilayers (eds Lipowsky, R. & Sackmann, E.) Vol. 1, 359–401 (Elsevier, 1995).

  44. 44.

    Mackley, M. Stretching polymer chains. Rheol. Acta 49, 443–458 (2010).

    CAS  Article  Google Scholar 

  45. 45.

    Koynova, R. & Caffrey, M. Phases and phase transitions of the phosphatidylcholines. Biochim. Biophys. Acta Rev. Biomembranes 1376, 91–145 (1998).

    CAS  Article  Google Scholar 

  46. 46.

    Ho, J. C. S., Rangamani, P., Liedberg, B. & Parikh, A. N. Mixing water, transducing energy, and shaping membranes: autonomously self-regulating giant vesicles. Langmuir 32, 2151–2163 (2016).

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Oglęcka, K., Rangamani, P., Liedberg, B., Kraut, R. S. & Parikh, A. N. Oscillatory phase separation in giant lipid vesicles induced by transmembrane osmotic differentials. eLife 3, e03695 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Yanagisawa, M., Imai, M. & Taniguchi, T. Shape deformation of ternary vesicles coupled with phase separation. Phys. Rev. Lett. 100, 148102 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Oglęcka, K., Sanborn, J., Parikh, A. N. & Kraut, R. S. Osmotic gradients induce bio-reminiscent morphological transformations in giant unilamellar vesicles. Front. Physiol. 3, 120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Chen, D. & Santore, M. M. Three dimensional (temperature–tension–composition) phase map of mixed DOPC-DPPC vesicles: two solid phases and a fluid phase coexist on three intersecting planes. Biochim. Biophys. Acta 1838, 2788–2797 (2014).

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Hamada, T., Kishimoto, Y., Nagasaki, T. & Takagi, M. Lateral phase separation in tense membranes. Soft Matter 7, 9061–9068 (2011).

    CAS  Article  Google Scholar 

  52. 52.

    Petruzielo, R. S., Heberle, F. A., Drazba, P., Katsaras, J. & Feigenson, G. W. Phase behavior and domain size in sphingomyelin-containing lipid bilayers. Biochim. Biophys. Acta 1828, 1302–1313 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Macchione, M., Chuard, N., Sakai, N. & Matile, S. Planarizable push–pull probes: overtwisted flipper mechanophores. ChemPlusChem 82, 1062–1066 (2017).

    CAS  Article  Google Scholar 

  54. 54.

    Prifti, E. et al. A fluorogenic probe for SNAP-tagged plasma membrane proteins based on the solvatochromic molecule Nile red. ACS Chem. Biol. 9, 606–612 (2014).

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Mariana, A., Francesco, R., Martin, H., Christian, E. & Erdinc, S. Laurdan and Di-4-ANEPPDHQ probe different properties of the membrane. J. Phys. D 50, 134004 (2017).

    Article  CAS  Google Scholar 

  56. 56.

    Doval, D. A. et al. Amphiphilic dynamic NDI and PDI probes: imaging microdomains in giant unilamellar vesicles. Org. Biomol. Chem. 10, 6087–6093 (2012).

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Riggi, M. et al. A decrease in plasma membrane tension inhibits TORC2 activity via sequestration into PtdIns(4,5)P2-enriched domains. Nat. Cell Biol. https://doi.org/10.1038/s41556-018-105-z (in press).

  58. 58.

    Wahl, M., Koberling, F., Patting, M. & Erdmann, H. R. Time-resolved confocal fluorescence imaging and spectrocopy system with single molecule sensitivity and sub-micrometer resolution. Curr. Pharmaceut. Biotech. 5, 299–308 (2004).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank V. Mercier, G. Molinard and M. Laporte for technical support and useful scientific discussions. The authors thank the NMR, MS and Bioimaging platforms for services, and the University of Geneva, the Swiss National Centre of Competence in Research (NCCR) Chemical Biology, the NCCR Molecular Systems Engineering and the Swiss NSF for financial support. A.R. acknowledges funding from the Human Frontier Science Program CDA-0061-08, the Swiss National Fund for Research grants nos. 31003A_130520, 31003A_149975 and 31003A_173087, and the European Research Council Starting Grant no. 311536 (2011 call). E.D. acknowledges funding from Human Frontier Science Program (LT00305/2011-L).

Author information

Affiliations

Authors

Contributions

A.C., N.S., S.M. and A.R. designed the project. S.S. and M.D.M. synthesized the FliptR probe. E.D. and M.G.-G. designed and performed initial FLIM measurements. C.T. developed and made vertical PDMS walls for MDCK cell culture. A.C. performed all other experiments and analysis. A.C., E.D., N.S., S.M. and A.R. wrote the paper.

Corresponding author

Correspondence to Aurélien Roux.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures, and Video Captions

Reporting Summary

Supplementary Video 1

Staining of cells with FliptR

Supplementary Video 2

Fast-FLIM time-lapse of HELA cells under hyperosmotic shock

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Colom, A., Derivery, E., Soleimanpour, S. et al. A fluorescent membrane tension probe. Nature Chem 10, 1118–1125 (2018). https://doi.org/10.1038/s41557-018-0127-3

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing