Narrow-band single-photon emission through selective aryl functionalization of zigzag carbon nanotubes

Abstract

The introduction of sp3 defects into single-walled carbon nanotubes through covalent functionalization can generate new light-emitting states and thus dramatically expand their optical functionality. This may open up routes to enhanced imaging, photon upconversion, and room-temperature single-photon emission at telecom wavelengths. However, a significant challenge in harnessing this potential is that the nominally simple reaction chemistry of nanotube functionalization introduces a broad diversity of emitting states. Precisely defining a narrow band of emission energies necessitates constraining these states, which requires extreme selectivity in molecular binding configuration on the nanotube surface. We show here that such selectivity can be obtained through aryl functionalization of so-called ‘zigzag’ nanotube structures to achieve a threefold narrowing in emission bandwidth. Accompanying density functional theory modelling reveals that, because of the associated structural symmetry, the defect states become degenerate, thus limiting emission energies to a single narrow band. We show that this behaviour can only result from a predominant selectivity for ortho binding configurations of the aryl groups on the nanotube lattice.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Chirality dependence of aryl diazonium binding configurations.
Fig. 2: Chirality dependence of defect-state photoluminescence spectra.
Fig. 3: Single-tube photoluminescence spectra of 13 aryl-functionalized (11,0) nanotubes.
Fig. 4: Calculated defect-state photoluminescence spectra.
Fig. 5: Chirality-dependent aryl-diazonium reaction kinetics.

References

  1. 1.

    Michler, P. et al. Quantum correlation among photons from a single quantum dot at room temperature. Nature 406, 968–970 (2000).

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Miyazawa, T. et al. Single-photon emission at 1.5 μm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities. Appl. Phys. Lett. 109, 132106 (2016).

    Article  CAS  Google Scholar 

  3. 3.

    Srivastava, A. et al. Optically active quantum dots in monolayer WSe2. Nat. Nanotech. 10, 491–496 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotech. 10, 497–501 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotech. 10, 503–506 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Chakraborty, C., Kinnischtzke, L., Goodfellow, K. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotech. 10, 507–512 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotech. 11, 37–41 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    Hogele, A., Galland, C., Winger, M. & Imamoglu, A. Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys. Rev. Lett. 100, 217401 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Walden-Newman, W., Sarpkaya, I. & Strauf, S. Quantum light signatures and nanosecond spectral diffusion from cavity-embedded carbon nanotubes. Nano Lett. 12, 1934–1941 (2012).

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Hofmann, M. S. et al. Bright, long-lived, and coherent excitons in carbon nanotube quantum dots. Nat. Nanotech. 8, 502–505 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    Ma, X., Hartmann, N. F., Baldwin, J. K. S., Doorn, S. K. & Htoon, H. Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nat. Nanotech. 10, 671–675 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    He, X. et al. Tunable room-temperature single-photon emission at telecom wavelengths from sp 3 defects in carbon nanotubes. Nat. Photon. 11, 577–582 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Zheng, M. Sorting carbon nanotubes. Top. Curr. Chem. 375, 13 (2017).

    Article  CAS  Google Scholar 

  16. 16.

    Ghosh, S., Bachilo, S. M., Simonette, R. A., Beckingham, K. M. & Weisman, R. B. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science 330, 1656–1659 (2010).

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Ma, X. et al. Electronic structure and chemical nature of oxygen dopant states in carbon nanotubes. ACS Nano 8, 10782–10789 (2014).

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Kwon, H. et al. Molecularly tunable fluorescent quantum defects. J. Am. Chem. Soc. 138, 6878–6885 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Piao, Y. M. et al. Brightening of carbon nanotube photoluminescence through the incorporation of sp 3 defects. Nat. Chem. 5, 840–845 (2013).

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Miyauchi, Y. et al. Brightening of excitons in carbon nanotubes on dimensionality modification. Nat. Photon. 7, 715–719 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    Akizuki, N., Aota, S., Mouri, S., Matsuda, K. & Miyauchi, Y. Efficient near-infrared up-conversion photoluminescence in carbon nanotubes. Nat. Commun. 6, 8920 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    He, X. et al. Low-temperature single carbon nanotube spectroscopy of sp 3 quantum defects. ACS Nano 11, 10785–10796 (2017).

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Shiraki, T., Shiraishi, T., Juhász, G. & Nakashima, N. Emergence of new redshifted carbon nanotube photoluminescence based on proximal doped-site design. Sci. Rep. 6, 28393 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Maeda, Y. et al. Tuning of the photoluminescence and up-conversion photoluminescence properties of single-walled carbon nanotubes by chemical functionalization. Nanoscale 8, 16916–16921 (2016).

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Gifford, B. J., Kilina, S., Htoon, H., Doorn, S. K. & Tretiak, S. Exciton localization and optical emission in aryl-functionalized carbon nanotubes. J. Phys. Chem. C 122, 1828–1838 (2017).

    Article  CAS  Google Scholar 

  26. 26.

    Strano, M. S. et al. Electronic structure control of single-walled carbon nanotube functionalization. Science 301, 1519–1522 (2003).

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Niyogi, S. et al. Chemistry of single-walled carbon nanotubes. Acc. Chem. Res. 35, 1105–1113 (2002).

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Bekyarova, E. et al. Effect of covalent chemistry on the electronic structure and properties of carbon nanotubes and graphene. Acc. Chem. Res. 46, 65–76 (2013).

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Chua, C. K. & Pumera, M. Covalent chemistry on graphene. Chem. Soc. Rev. 42, 3222–3233 (2013).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Vora, P. M., Tu, X., Mele, E. J., Zheng, M. & Kikkawa, J. M. Chirality dependence of the K-momentum dark excitons in carbon nanotubes. Phys. Rev. B 81, 155123 (2010).

    Article  CAS  Google Scholar 

  31. 31.

    Niyogi, S., Densmore, C. G. & Doorn, S. K. Electrolyte tuning of surfactant interfacial behavior for enhanced density-based separations of single-walled carbon nanotubes. J. Am. Chem. Soc. 131, 1144–1153 (2009).

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Duque, J. G., Densmore, C. G. & Doorn, S. K. Saturation of surfactant structure at the single-walled carbon nanotube surface. J. Am. Chem. Soc. 132, 16165–16175 (2010).

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Tummala, N. R. & Striolo, A. SDS surfactants on carbon nanotubes: aggregate morphology. ACS Nano 3, 595–602 (2009).

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Tu, X., Manohar, S., Jagota, A. & Zheng, M. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460, 250–253 (2009).

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Yarotski, D. et al. Scanning tunneling microscopy of DNA-wrapped carbon nanotubes. Nano Lett. 9, 12–17 (2009).

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Shiraki, T., Uchimura, S., Shiraishi, T., Onitsuka, H. & Nakashima, N. Near infrared photoluminescence modulation by defect site design using aryl isomers in locally functionalized single-walled carbon nanotubes. Chem. Commun. 53, 12544–12547 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    Subbaiyan, N. K. et al. Role of surfactants and salt in aqueous two-phase separation of carbon nanotubes towards simple chirality isolation. ACS Nano 8, 1619–1628 (2014).

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Yomogida, Y. et al. Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging. Nat. Commun. 7, 12056 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Ao, G., Streit, J. K., Fagan, J. A. & Zheng, M. Differentiating left- and right-handed carbon nanotubes by DNA. J. Am. Chem. Soc. 138, 16677–16685 (2016).

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Streit, J. K., Fagan, J. A. & Zheng, M. A low energy route to DNA-wrapped carbon nanotubes via replacement of bile salt surfactants. Anal. Chem. 89, 10496–10503 (2017).

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Hartmann, N. F. et al. Photoluminescence imaging of solitary dopant sites in covalently doped single-wall carbon nanotubes. Nanoscale 7, 20521–20530 (2015).

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Hartmann, N. F. et al. Photoluminescence dynamics of aryls sp 3 defect states in single-walled carbon nanotubes. ACS Nano 10, 8355–8365 (2016).

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Powell, L. R., Piao, Y. & Wang, Y. Optical excitation of carbon nanotubes drives localized diazonium reactions. J. Phys. Chem. Lett. 7, 3690–3694 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Sanchez, S. R., Bachilo, S. M., Kadria-Vili, Y., Lin, C. W. & Weisman, R. B. (n,m) specific absorption cross sections of single-walled carbon nanotubes measured by variance spectroscopy. Nano Lett. 16, 6903–6909 (2016).

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Frisch, M. J et al. Gaussian 09 (Gaussian, Inc., 2009).

  46. 46.

    Yanai, T., Tew, D. P. & Handy, N. C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004).

    CAS  Article  Google Scholar 

  47. 47.

    Hehre, W. J., Stewart, R. F. & Pople, J. A. Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals. J. Chem. Phys. 51, 2657–2664 (1969).

    CAS  Article  Google Scholar 

  48. 48.

    Gifford, B. J. et al. Correction scheme for comparison of computed and experimental optical transition energies in functionalized single-walled carbon nanotubes. J. Phys. Chem. Lett. 9, 2460–2468 (2018).

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Kilina, S., Ramirez, J. & Tretiak, S. Brightening of the lowest exciton in carbon nanotubes via chemical functionalization. Nano Lett. 12, 2306–2312 (2012).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was conducted in part at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Science user facility, and supported in part by the Center for Nonlinear Studies and by Los Alamos National Laboratory Directed Research and Development funds. S.K. acknowledges financial support from NSF Grant CHE-1413614 for studies of functionalized carbon nanotubes. For computational resources and administrative support, the authors thank the Center for Computationally Assisted Science and Technology (CCAST) at North Dakota State University. The authors also acknowledge the LANL Institutional Computing (IC) Program for providing computational resources. H.K. acknowledges support from JSPS KAKENHI grant no. JP25220602. Correspondence and requests for materials should be addressed to S.K.D. or S.T.

Author information

Affiliations

Authors

Contributions

S.K.D. conceived and designed the experiments. Nanotube separations, functionalization, and spectroscopic characterization were performed by A.S. with assistance from X.H. under the supervision of S.K.D. Single-nanotube spectroscopy was performed by X.H. under the supervision of H.H. Additional purified nanotube material was provided by G.A., M.Z. and H.K. Theoretical modelling was performed by B.J.G. under the supervision of S.T. and S.K. All authors contributed to the analysis and interpretation of results. A.S., B.J.G., S.T. and S.K.D. wrote the manuscript with assistance from all co-authors.

Corresponding authors

Correspondence to Sergei Tretiak or Stephen K. Doorn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–5, Supplementary Table 1, Supplementary Computational Methods

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saha, A., Gifford, B.J., He, X. et al. Narrow-band single-photon emission through selective aryl functionalization of zigzag carbon nanotubes. Nature Chem 10, 1089–1095 (2018). https://doi.org/10.1038/s41557-018-0126-4

Download citation

Further reading