Micrometre-long covalent organic fibres by photoinitiated chain-growth radical polymerization on an alkali-halide surface


On-surface polymerization is a promising technique to prepare organic functional nanomaterials that are challenging to synthesize in solution, but it is typically used on metal substrates, which play a catalytic role. Previous examples on insulating surfaces have involved intermediate self-assembled structures, which face high barriers to diffusion, or annealing to higher temperatures, which generally causes rapid dewetting and desorption of the monomers. Here we report the photoinitiated radical polymerization, initiated from a two-dimensional gas phase, of a dimaleimide monomer on an insulating KCl surface. Polymer fibres up to 1 μm long are formed through chain-like rather than step-like growth. Interactions between potassium cations and the dimaleimide’s oxygen atoms facilitate the propagation of the polymer fibres along a preferred axis of the substrate over long distances. Density functional theory calculations, non-contact atomic force microscopy imaging and manipulations at room temperature were used to explore the initiation and propagation processes, as well as the structure and stability of the resulting one-dimensional polymer fibres.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Calculated structure and charge-difference plot of a dimaleimide molecule adsorbed on the KCl (001) surface.
Fig. 2: Evaluation of the polymer structure obtained on polymerization without light.
Fig. 3: Influence of weak ultraviolet illumination on the growth of the polymer fibres.
Fig. 4: Proof of the mechanical stability of the fibres.


  1. 1.

    Kosterlitz, J. M. Nobel Lecture: Topological defects and phase transition. Rev. Mod. Phys. 89, 040501 (2017).

    Article  Google Scholar 

  2. 2.

    Haldane, F. D. M. Nobel Lecture: Topological quantum matter. Rev. Mod. Phys. 89, 040502 (2017).

    Article  Google Scholar 

  3. 3.

    Copie, G. et al. Surface-induced optimal packing of two-dimensional molecular networks. Phys. Rev. Lett. 114, 066101 (2015).

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Ward, M. D. Soft crystals in flatland: unraveling epitaxial growth. ACS Nano 10, 6424–6428 (2016).

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Koudia, M., Nardi, E., Siri, O. & Abel, M. On-surface synthesis of covalent coordination polymers on micrometer scale. Nano Res. 10, 933–940 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    Klappenberger, F. et al. On-surface synthesis of carbon-based scaffolds and nanomaterials using terminal alkynes. Acc. Chem. Res. 48, 2140–2150 (2015).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Hla, S. W., Bartels, L., Meyer, G. & Rieder, K. H. Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: towards single molecule engineering. Phys. Rev. Lett. 85, 2777–2780 (2000).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol. 2, 687–691 (2007).

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Lipton-Duffin, J. A., Ivasenko, O., Perepichka, D. F. & Rosei, F. Synthesis of polyphenylene molecular wires by surface-confined polymerization. Small 5, 592–597 (2009).

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Lafferentz, L. et al. Conductance of a single conjugated polymer as a continuous function of its length. Science 323, 1193–1197 (2009).

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Cai, J. M. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2012).

    Article  CAS  Google Scholar 

  12. 12.

    Basagni, A. et al. On-surface photo-dissociation of C–Br bonds: towards room temperature Ullmann coupling. Chem. Commun. 51, 12593–12596 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    Zhang, Y. Q. et al. Homo-coupling of terminal alkynes on a noble metal surface. Nat. Commun. 3, 1286 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Gao, H. Y. et al. Glaser coupling at metal surfaces. Angew. Chem. Int. Ed. 52, 4024–4028 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    Weigelt, S. et al. Covalent Interlinking of an aldehyde and an amine on a Au(111) surface in ultrahigh vacuum. Angew. Chem. Int. Ed. 46, 9227–9230 (2007).

    CAS  Article  Google Scholar 

  16. 16.

    Zwaneveld, N. et al. Organized formation of 2D extended covalent organic frameworks at surfaces. J. Am. Chem. Soc. 130, 6678–6679 (2008).

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Dienstmaier, J. F. et al. Isoreticular two-dimensional covalent organic frameworks synthesized by on-surface condensation of diboronic acids. ACS Nano 6, 7234–7242 (2012).

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Clair, S., Abel, M. & Porte, L. Growth of boronic acid based two-dimensional covalent networks on a metal surface under ultrahigh vacuum. Chem. Commun. 50, 9627–9635 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    Perepichka, D. F. & Rosei, F. Extending polymer conjugation into the second dimension. Science 323, 216–217 (2009).

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Franc, G. & Gourdon, A. Covalent networks through on-surface chemistry in ultra-high vacuum: state-of-the-art and recent developments. Phys. Chem. Chem. Phys. 13, 14283–14292 (2011).

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Fan, Q., Gottfried, J. M. & Zhu, J. Surface-catalyzed C−C covalent coupling strategies toward the synthesis of low-dimensional carbon-based nanostructures. Acc. Chem. Res. 48, 2484–2494 (2015).

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Payamyar, P., King, B. T., Öttinger, H. C. & Schlüter, A. D. Two-dimensional polymers: concepts and perspectives. Chem. Commun. 52, 18–34 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Wakayama, Y. On-surface molecular nanoarchitectonics: from self-assembly to directed assembly. Jpn J. Appl. Phys. 55, 1102AA (2016).

    Google Scholar 

  24. 24.

    Di Giovannantonio, M. et al. Mechanistic picture and kinetic analysis of surface-confined Ullmann polymerization. J. Am. Chem. Soc. 138, 16696–16702 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Cai, Y. H., Shao, Y. X. & Xu, G. Q. Photoinduced construction of a second covalently bonded organic layer on the Si(111)-7×7 surface. J. Am. Chem. Soc. 129, 8404–8405 (2007).

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Deshpande, A. et al. Self-assembly and photopolymerization of sub-2 nm one-dimensional organic nanostructures on graphene. J. Am. Chem. Soc. 134, 16759–16764 (2012).

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Gao, H.-Y. et al. Photochemical Glaser coupling at metal surfaces. J. Phys. Chem. C 118, 6272–6277 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    Shen, Q. et al. Self-assembled two-dimensional nanoporous molecular arrays and photoinduced polymerization of 4-bromo-4′-hydroxybiphenyl on Ag(111). J. Chem. Phys. 142, 101902 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Okawa, Y. & Aono, M. Nanoscale control of chain polymerization. Nature 409, 683–684 (2001).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Clair, S., Ourdjini, O., Abel, M. & Porte, L. Tip- or electron beam-induced surface polymerization. Chem. Commun. 47, 8028–8030 (2011).

    CAS  Article  Google Scholar 

  31. 31.

    Dinca, L. E. et al. Tip-induced C–H activation and oligomerization of thienoanthracenes. Chem. Commun. 50, 8791–8793 (2014).

    CAS  Article  Google Scholar 

  32. 32.

    Qiu, X. H., Nazin, G. V. & Ho, W. Vibrationally resolved fluorescence excited with submolecular precision. Science 299, 542–546 (2003).

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Bieri, M. et al. Two-dimensional polymer formation on surfaces: insight into the roles of precursor mobility and reactivity. J. Am. Chem. Soc. 132, 16669–16676 (2010).

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Gao, H.-Y. et al. Decarboxylative polymerization of 2,6-naphthalenedicarboxylic acid at surfaces. J. Am. Chem. Soc. 136, 9658–9663 (2014).

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Bombis, C. et al. Single molecular wires connecting metallic and insulating surface areas. Angew. Chem. Int. Ed. 48, 9966–9970 (2009).

    CAS  Article  Google Scholar 

  36. 36.

    Abel, M., Clair, S., Ourdjini, O., Mossoyan, M. & Porte, L. Single layer of polymeric Fe–phthalocyanine: an organometallic sheet on metal and thin insulating film. J. Am. Chem. Soc. 133, 1203–1205 (2011).

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Dienel, T. et al. Dehalogenation and coupling of a polycyclic hydrocarbon on an atomically thin insulator. ACS Nano 8, 6571–6579 (2014).

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Zhao, W., Dong, L., Huang, C., Win, Z. M. & Lin, N. Cu- and Pd-catalyzed Ullmann reaction on a hexagonal boron nitride layer. Chem. Commun. 52, 13225–13228 (2016).

    CAS  Article  Google Scholar 

  39. 39.

    Steurer, W., Fatayer, S., Gross, L. & Meyer, G. Probe-based measurement of lateral single-electron transfer between individual molecules. Nat. Commun. 6, 8353 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Kittelmann, M. et al. On-surface covalent linking of organic building blocks on a bulk insulator. ACS Nano 5, 8420–8425 (2011).

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Kittelmann, M., Nimmrich, M., Lindner, R., Gourdon, A. & Kühnle, A. Sequential and site-specific on-surface synthesis on a bulk insulator. ACS Nano 7, 5614–5620 (2013).

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Lindner, R. et al. Substrate templating guides the photoinduced reaction of C60 on calcite. Angew. Chem. Int. Ed. 53, 7952–7955 (2014).

    CAS  Article  Google Scholar 

  43. 43.

    Guo, C. et al. Mechanisms of covalent dimerization on a bulk insulating surface. J. Phys. Chem. C 121, 10053–10062 (2017).

    CAS  Article  Google Scholar 

  44. 44.

    Richter, A. et al. Diacetylene polymerization on a bulk insulator surface. Phys. Chem. Chem. Phys. 19, 15172–15176 (2017).

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Palma, C.-A. et al. Photoinduced C−C reactions on insulators toward photolithography of graphene nanoarchitectures. J. Am. Chem. Soc. 136, 4651–4658 (2014).

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Rahe, P. et al. Tuning molecular self-assembly on bulk insulator surfaces by anchoring of the organic building blocks. Adv. Mater. 25, 3948–3956 (2013).

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Zhong, D. et al. Linear alkane polymerization on a gold surface. Science 334, 213–216 (2011).

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Champness, N. R. Making the right connections. Nat. Chem. 4, 149–150 (2012).

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Díaz Arado, O. et al. On-surface azide–alkyne cycloaddition on Au(111). ACS Nano 7, 8509–8515 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. 50.

    Chen, Q. et al. Steering on-surface reactions by a self-assembly approach. Angew. Chem. Int. Ed. 56, 5026–5030 (2017).

    CAS  Article  Google Scholar 

  51. 51.

    Sedona, F. et al. Fullerene/porphyrin multicomponent nanostructures on Ag(110): from supramolecular self-assembly to extended copolymers. ACS Nano 4, 5147–5154 (2010).

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Guan, C.-Z., Wang, D. & Wan, L.-J. Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation. Chem. Commun. 48, 2943–2945 (2012).

    CAS  Article  Google Scholar 

  53. 53.

    Webster, O. W. Living polymerization methods. Science 251, 887–893 (1991).

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Hossain, Md. Z., Kato, H. S. & Kawai, M. Controlled fabrication of 1D molecular lines across the dimer rows on the Si(100)-(2×1)-H surface through the radical chain reaction. J. Am. Chem. Soc. 127, 15030–15031 (2005).

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Okawa, Y., Akai-Kasaya, M., Kuwahara, Y., Mandala, S. K. & Aono, M. Controlled chain polymerisation and chemical soldering for single-molecule electronics. Nanoscale 4, 3013–3028 (2012).

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Sun, Q. et al. On-surface formation of one-dimensional polyphenylene through Bergman cyclization. J. Am. Chem. Soc. 135, 8448–8451 (2013).

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Riss, A. et al. Local electronic and chemical structure of oligo-acetylene derivatives formed through radical cyclizations at a surface. Nano Lett. 14, 2251–2255 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Verstraete, V., Hirsche, B. E., Greenwood, J. & de Feyter, S. Confined polydiacetylene polymerization reactions for programmed length control. Chem. Commun. 53, 4207–4210 (2017).

    CAS  Article  Google Scholar 

  59. 59.

    Dolci, E. et al. Maleimides as a building block for the synthesis of high performance polymers. Polym. Rev. 56, 512–556 (2016).

    CAS  Article  Google Scholar 

  60. 60.

    Tsurkan, M. V., Jungnickel, C., Schlierf, M. & Werner, C. Forbidden chemistry: two-photon pathway in [2+2] cycloaddition of maleimides. J. Am. Chem. Soc. 139, 10184–10187 (2017).

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Hall, D. J., Van Den Berghe, H. M. & Dove, A. P. Synthesis and post-polymerization modification of maleimide-containing polymers by ‘thiol-ene’ click and Diels–Alder chemistries. Polym. Int. 60, 1149–1157 (2011).

    CAS  Article  Google Scholar 

  62. 62.

    Matsumoto, A., Kubota, T. & Ostsu, T. Radical polymerization of N-(alkyl-substituted phenyl)maleimides: synthesis of thermally stable polymers soluble in nonpolar solvents. Macromolecules 23, 4508–4513 (1990).

    CAS  Article  Google Scholar 

  63. 63.

    Stille, J. K. Step-growth polymerization. J. Chem. Educ. 58, 862–866 (1981).

    CAS  Article  Google Scholar 

  64. 64.

    Vazquez, C. P., Joly-Duhamel, C. & Boutevin, B. Photopolymerization without photoinitiator of bismaleimide-containing oligo(oxypropylene)s: effect of oligoethers chain length. Macromol. Chem. Phys. 210, 269–278 (2009).

    CAS  Article  Google Scholar 

  65. 65.

    Amrous, A. et al. Design and control over the morphology of self-assembled films on ionic substrates. Adv. Mater. Interfaces 1, 1400414 (2014).

    Article  CAS  Google Scholar 

  66. 66.

    Matena, M., Riehm, T., Stöhr, M., Jung, T. A. & Gade, L. H. Transforming surface coordination polymers into covalent surface polymers: linked polycondensed aromatics through oligomerization of N-heterocyclic carbene intermediates. Angew. Chem. Int. Ed. 47, 2414–2417 (2008).

    CAS  Article  Google Scholar 

  67. 67.

    Horcas, I. et al. WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Grimme, S. Density functional theory with London dispersion corrections. WIREs Comput. Mol. Sci. 1, 211–228 (2011).

    CAS  Article  Google Scholar 

  70. 70.

    Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. cp2k: atomistic simulations of condensed matter systems. WIREs Comput. Mol. Sci. 4, 15–25 (2014).

    CAS  Article  Google Scholar 

  71. 71.

    VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. 72.

    Krack, M. Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theor. Chem. Acc. 114, 145–152 (2005).

    CAS  Article  Google Scholar 

  73. 73.

    VandeVondele, J. et al. QUICKSTEP: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    CAS  Article  Google Scholar 

  74. 74.

    Henkelman, G., Uberuaga, B. P. & Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    CAS  Article  Google Scholar 

  75. 75.

    Henkelman, G. & Jonsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

    CAS  Article  Google Scholar 

Download references


The authors acknowledge financial support from the French National Research Agency through contracts ORGANI’SO (ANR-15-CE09-0017) and PhotoNet (ANR-16-JTIC-0002). Via our membership of the UK’s HEC Materials Chemistry Consortium, which is funded by EPSRC (EP/L000202), this work used the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk). S. Clair, F. Palmino, C. M. Thomas and A. L. Shluger are acknowledged for helpful discussions.

Author information




All the authors contributed to the scientific discussion and the writing of the manuscript, C.L., L.N. and F.P. performed the NCAFM experiments, M.F. and F.C. purified the molecules, and M.W., D.Z.G. and F.F.C. performed the DFT and MD calculations.

Corresponding authors

Correspondence to Christian Loppacher or Matthew B. Watkins.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Additional details on the synthesis, characterization and computations; Supplementary Figures 1–7; Supplementary Reference 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Para, F., Bocquet, F., Nony, L. et al. Micrometre-long covalent organic fibres by photoinitiated chain-growth radical polymerization on an alkali-halide surface. Nature Chem 10, 1112–1117 (2018). https://doi.org/10.1038/s41557-018-0120-x

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing