Article | Published:

Micrometre-long covalent organic fibres by photoinitiated chain-growth radical polymerization on an alkali-halide surface

Abstract

On-surface polymerization is a promising technique to prepare organic functional nanomaterials that are challenging to synthesize in solution, but it is typically used on metal substrates, which play a catalytic role. Previous examples on insulating surfaces have involved intermediate self-assembled structures, which face high barriers to diffusion, or annealing to higher temperatures, which generally causes rapid dewetting and desorption of the monomers. Here we report the photoinitiated radical polymerization, initiated from a two-dimensional gas phase, of a dimaleimide monomer on an insulating KCl surface. Polymer fibres up to 1 μm long are formed through chain-like rather than step-like growth. Interactions between potassium cations and the dimaleimide’s oxygen atoms facilitate the propagation of the polymer fibres along a preferred axis of the substrate over long distances. Density functional theory calculations, non-contact atomic force microscopy imaging and manipulations at room temperature were used to explore the initiation and propagation processes, as well as the structure and stability of the resulting one-dimensional polymer fibres.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Kosterlitz, J. M. Nobel Lecture: Topological defects and phase transition. Rev. Mod. Phys. 89, 040501 (2017).

  2. 2.

    Haldane, F. D. M. Nobel Lecture: Topological quantum matter. Rev. Mod. Phys. 89, 040502 (2017).

  3. 3.

    Copie, G. et al. Surface-induced optimal packing of two-dimensional molecular networks. Phys. Rev. Lett. 114, 066101 (2015).

  4. 4.

    Ward, M. D. Soft crystals in flatland: unraveling epitaxial growth. ACS Nano 10, 6424–6428 (2016).

  5. 5.

    Koudia, M., Nardi, E., Siri, O. & Abel, M. On-surface synthesis of covalent coordination polymers on micrometer scale. Nano Res. 10, 933–940 (2017).

  6. 6.

    Klappenberger, F. et al. On-surface synthesis of carbon-based scaffolds and nanomaterials using terminal alkynes. Acc. Chem. Res. 48, 2140–2150 (2015).

  7. 7.

    Hla, S. W., Bartels, L., Meyer, G. & Rieder, K. H. Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: towards single molecule engineering. Phys. Rev. Lett. 85, 2777–2780 (2000).

  8. 8.

    Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol. 2, 687–691 (2007).

  9. 9.

    Lipton-Duffin, J. A., Ivasenko, O., Perepichka, D. F. & Rosei, F. Synthesis of polyphenylene molecular wires by surface-confined polymerization. Small 5, 592–597 (2009).

  10. 10.

    Lafferentz, L. et al. Conductance of a single conjugated polymer as a continuous function of its length. Science 323, 1193–1197 (2009).

  11. 11.

    Cai, J. M. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2012).

  12. 12.

    Basagni, A. et al. On-surface photo-dissociation of C–Br bonds: towards room temperature Ullmann coupling. Chem. Commun. 51, 12593–12596 (2015).

  13. 13.

    Zhang, Y. Q. et al. Homo-coupling of terminal alkynes on a noble metal surface. Nat. Commun. 3, 1286 (2012).

  14. 14.

    Gao, H. Y. et al. Glaser coupling at metal surfaces. Angew. Chem. Int. Ed. 52, 4024–4028 (2013).

  15. 15.

    Weigelt, S. et al. Covalent Interlinking of an aldehyde and an amine on a Au(111) surface in ultrahigh vacuum. Angew. Chem. Int. Ed. 46, 9227–9230 (2007).

  16. 16.

    Zwaneveld, N. et al. Organized formation of 2D extended covalent organic frameworks at surfaces. J. Am. Chem. Soc. 130, 6678–6679 (2008).

  17. 17.

    Dienstmaier, J. F. et al. Isoreticular two-dimensional covalent organic frameworks synthesized by on-surface condensation of diboronic acids. ACS Nano 6, 7234–7242 (2012).

  18. 18.

    Clair, S., Abel, M. & Porte, L. Growth of boronic acid based two-dimensional covalent networks on a metal surface under ultrahigh vacuum. Chem. Commun. 50, 9627–9635 (2014).

  19. 19.

    Perepichka, D. F. & Rosei, F. Extending polymer conjugation into the second dimension. Science 323, 216–217 (2009).

  20. 20.

    Franc, G. & Gourdon, A. Covalent networks through on-surface chemistry in ultra-high vacuum: state-of-the-art and recent developments. Phys. Chem. Chem. Phys. 13, 14283–14292 (2011).

  21. 21.

    Fan, Q., Gottfried, J. M. & Zhu, J. Surface-catalyzed C−C covalent coupling strategies toward the synthesis of low-dimensional carbon-based nanostructures. Acc. Chem. Res. 48, 2484–2494 (2015).

  22. 22.

    Payamyar, P., King, B. T., Öttinger, H. C. & Schlüter, A. D. Two-dimensional polymers: concepts and perspectives. Chem. Commun. 52, 18–34 (2016).

  23. 23.

    Wakayama, Y. On-surface molecular nanoarchitectonics: from self-assembly to directed assembly. Jpn J. Appl. Phys. 55, 1102AA (2016).

  24. 24.

    Di Giovannantonio, M. et al. Mechanistic picture and kinetic analysis of surface-confined Ullmann polymerization. J. Am. Chem. Soc. 138, 16696–16702 (2016).

  25. 25.

    Cai, Y. H., Shao, Y. X. & Xu, G. Q. Photoinduced construction of a second covalently bonded organic layer on the Si(111)-7×7 surface. J. Am. Chem. Soc. 129, 8404–8405 (2007).

  26. 26.

    Deshpande, A. et al. Self-assembly and photopolymerization of sub-2 nm one-dimensional organic nanostructures on graphene. J. Am. Chem. Soc. 134, 16759–16764 (2012).

  27. 27.

    Gao, H.-Y. et al. Photochemical Glaser coupling at metal surfaces. J. Phys. Chem. C 118, 6272–6277 (2014).

  28. 28.

    Shen, Q. et al. Self-assembled two-dimensional nanoporous molecular arrays and photoinduced polymerization of 4-bromo-4′-hydroxybiphenyl on Ag(111). J. Chem. Phys. 142, 101902 (2015).

  29. 29.

    Okawa, Y. & Aono, M. Nanoscale control of chain polymerization. Nature 409, 683–684 (2001).

  30. 30.

    Clair, S., Ourdjini, O., Abel, M. & Porte, L. Tip- or electron beam-induced surface polymerization. Chem. Commun. 47, 8028–8030 (2011).

  31. 31.

    Dinca, L. E. et al. Tip-induced C–H activation and oligomerization of thienoanthracenes. Chem. Commun. 50, 8791–8793 (2014).

  32. 32.

    Qiu, X. H., Nazin, G. V. & Ho, W. Vibrationally resolved fluorescence excited with submolecular precision. Science 299, 542–546 (2003).

  33. 33.

    Bieri, M. et al. Two-dimensional polymer formation on surfaces: insight into the roles of precursor mobility and reactivity. J. Am. Chem. Soc. 132, 16669–16676 (2010).

  34. 34.

    Gao, H.-Y. et al. Decarboxylative polymerization of 2,6-naphthalenedicarboxylic acid at surfaces. J. Am. Chem. Soc. 136, 9658–9663 (2014).

  35. 35.

    Bombis, C. et al. Single molecular wires connecting metallic and insulating surface areas. Angew. Chem. Int. Ed. 48, 9966–9970 (2009).

  36. 36.

    Abel, M., Clair, S., Ourdjini, O., Mossoyan, M. & Porte, L. Single layer of polymeric Fe–phthalocyanine: an organometallic sheet on metal and thin insulating film. J. Am. Chem. Soc. 133, 1203–1205 (2011).

  37. 37.

    Dienel, T. et al. Dehalogenation and coupling of a polycyclic hydrocarbon on an atomically thin insulator. ACS Nano 8, 6571–6579 (2014).

  38. 38.

    Zhao, W., Dong, L., Huang, C., Win, Z. M. & Lin, N. Cu- and Pd-catalyzed Ullmann reaction on a hexagonal boron nitride layer. Chem. Commun. 52, 13225–13228 (2016).

  39. 39.

    Steurer, W., Fatayer, S., Gross, L. & Meyer, G. Probe-based measurement of lateral single-electron transfer between individual molecules. Nat. Commun. 6, 8353 (2015).

  40. 40.

    Kittelmann, M. et al. On-surface covalent linking of organic building blocks on a bulk insulator. ACS Nano 5, 8420–8425 (2011).

  41. 41.

    Kittelmann, M., Nimmrich, M., Lindner, R., Gourdon, A. & Kühnle, A. Sequential and site-specific on-surface synthesis on a bulk insulator. ACS Nano 7, 5614–5620 (2013).

  42. 42.

    Lindner, R. et al. Substrate templating guides the photoinduced reaction of C60 on calcite. Angew. Chem. Int. Ed. 53, 7952–7955 (2014).

  43. 43.

    Guo, C. et al. Mechanisms of covalent dimerization on a bulk insulating surface. J. Phys. Chem. C 121, 10053–10062 (2017).

  44. 44.

    Richter, A. et al. Diacetylene polymerization on a bulk insulator surface. Phys. Chem. Chem. Phys. 19, 15172–15176 (2017).

  45. 45.

    Palma, C.-A. et al. Photoinduced C−C reactions on insulators toward photolithography of graphene nanoarchitectures. J. Am. Chem. Soc. 136, 4651–4658 (2014).

  46. 46.

    Rahe, P. et al. Tuning molecular self-assembly on bulk insulator surfaces by anchoring of the organic building blocks. Adv. Mater. 25, 3948–3956 (2013).

  47. 47.

    Zhong, D. et al. Linear alkane polymerization on a gold surface. Science 334, 213–216 (2011).

  48. 48.

    Champness, N. R. Making the right connections. Nat. Chem. 4, 149–150 (2012).

  49. 49.

    Díaz Arado, O. et al. On-surface azide–alkyne cycloaddition on Au(111). ACS Nano 7, 8509–8515 (2013).

  50. 50.

    Chen, Q. et al. Steering on-surface reactions by a self-assembly approach. Angew. Chem. Int. Ed. 56, 5026–5030 (2017).

  51. 51.

    Sedona, F. et al. Fullerene/porphyrin multicomponent nanostructures on Ag(110): from supramolecular self-assembly to extended copolymers. ACS Nano 4, 5147–5154 (2010).

  52. 52.

    Guan, C.-Z., Wang, D. & Wan, L.-J. Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation. Chem. Commun. 48, 2943–2945 (2012).

  53. 53.

    Webster, O. W. Living polymerization methods. Science 251, 887–893 (1991).

  54. 54.

    Hossain, Md. Z., Kato, H. S. & Kawai, M. Controlled fabrication of 1D molecular lines across the dimer rows on the Si(100)-(2×1)-H surface through the radical chain reaction. J. Am. Chem. Soc. 127, 15030–15031 (2005).

  55. 55.

    Okawa, Y., Akai-Kasaya, M., Kuwahara, Y., Mandala, S. K. & Aono, M. Controlled chain polymerisation and chemical soldering for single-molecule electronics. Nanoscale 4, 3013–3028 (2012).

  56. 56.

    Sun, Q. et al. On-surface formation of one-dimensional polyphenylene through Bergman cyclization. J. Am. Chem. Soc. 135, 8448–8451 (2013).

  57. 57.

    Riss, A. et al. Local electronic and chemical structure of oligo-acetylene derivatives formed through radical cyclizations at a surface. Nano Lett. 14, 2251–2255 (2014).

  58. 58.

    Verstraete, V., Hirsche, B. E., Greenwood, J. & de Feyter, S. Confined polydiacetylene polymerization reactions for programmed length control. Chem. Commun. 53, 4207–4210 (2017).

  59. 59.

    Dolci, E. et al. Maleimides as a building block for the synthesis of high performance polymers. Polym. Rev. 56, 512–556 (2016).

  60. 60.

    Tsurkan, M. V., Jungnickel, C., Schlierf, M. & Werner, C. Forbidden chemistry: two-photon pathway in [2+2] cycloaddition of maleimides. J. Am. Chem. Soc. 139, 10184–10187 (2017).

  61. 61.

    Hall, D. J., Van Den Berghe, H. M. & Dove, A. P. Synthesis and post-polymerization modification of maleimide-containing polymers by ‘thiol-ene’ click and Diels–Alder chemistries. Polym. Int. 60, 1149–1157 (2011).

  62. 62.

    Matsumoto, A., Kubota, T. & Ostsu, T. Radical polymerization of N-(alkyl-substituted phenyl)maleimides: synthesis of thermally stable polymers soluble in nonpolar solvents. Macromolecules 23, 4508–4513 (1990).

  63. 63.

    Stille, J. K. Step-growth polymerization. J. Chem. Educ. 58, 862–866 (1981).

  64. 64.

    Vazquez, C. P., Joly-Duhamel, C. & Boutevin, B. Photopolymerization without photoinitiator of bismaleimide-containing oligo(oxypropylene)s: effect of oligoethers chain length. Macromol. Chem. Phys. 210, 269–278 (2009).

  65. 65.

    Amrous, A. et al. Design and control over the morphology of self-assembled films on ionic substrates. Adv. Mater. Interfaces 1, 1400414 (2014).

  66. 66.

    Matena, M., Riehm, T., Stöhr, M., Jung, T. A. & Gade, L. H. Transforming surface coordination polymers into covalent surface polymers: linked polycondensed aromatics through oligomerization of N-heterocyclic carbene intermediates. Angew. Chem. Int. Ed. 47, 2414–2417 (2008).

  67. 67.

    Horcas, I. et al. WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).

  68. 68.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

  69. 69.

    Grimme, S. Density functional theory with London dispersion corrections. WIREs Comput. Mol. Sci. 1, 211–228 (2011).

  70. 70.

    Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. cp2k: atomistic simulations of condensed matter systems. WIREs Comput. Mol. Sci. 4, 15–25 (2014).

  71. 71.

    VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

  72. 72.

    Krack, M. Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theor. Chem. Acc. 114, 145–152 (2005).

  73. 73.

    VandeVondele, J. et al. QUICKSTEP: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

  74. 74.

    Henkelman, G., Uberuaga, B. P. & Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

  75. 75.

    Henkelman, G. & Jonsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

Download references

Acknowledgements

The authors acknowledge financial support from the French National Research Agency through contracts ORGANI’SO (ANR-15-CE09-0017) and PhotoNet (ANR-16-JTIC-0002). Via our membership of the UK’s HEC Materials Chemistry Consortium, which is funded by EPSRC (EP/L000202), this work used the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk). S. Clair, F. Palmino, C. M. Thomas and A. L. Shluger are acknowledged for helpful discussions.

Author information

All the authors contributed to the scientific discussion and the writing of the manuscript, C.L., L.N. and F.P. performed the NCAFM experiments, M.F. and F.C. purified the molecules, and M.W., D.Z.G. and F.F.C. performed the DFT and MD calculations.

Correspondence to Christian Loppacher or Matthew B. Watkins.

Supplementary information

Supplementary Information

Additional details on the synthesis, characterization and computations; Supplementary Figures 1–7; Supplementary Reference 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: Calculated structure and charge-difference plot of a dimaleimide molecule adsorbed on the KCl (001) surface.
Fig. 2: Evaluation of the polymer structure obtained on polymerization without light.
Fig. 3: Influence of weak ultraviolet illumination on the growth of the polymer fibres.
Fig. 4: Proof of the mechanical stability of the fibres.