Isoreticular two-dimensional magnetic coordination polymers prepared through pre-synthetic ligand functionalization

Abstract

Chemical functionalization is a powerful approach to tailor the physical and chemical properties of two-dimensional (2D) materials, increase their processability and stability, tune their functionalities and, even, create new 2D materials. This is typically achieved through post-synthetic functionalization by anchoring molecules on the surface of an exfoliated 2D crystal, but it inevitably alters the long-range structural order of the material. Here we present a pre-synthetic approach that allows the isolation of crystalline, robust and magnetic functionalized monolayers of coordination polymers. A series of five isostructural layered magnetic coordination polymers based on Fe(ii) centres and different benzimidazole derivatives (bearing a Cl, H, CH3, Br or NH2 side group) were first prepared. On mechanical exfoliation, 2D materials are obtained that retain their long-range structural order and exhibit good mechanical and magnetic properties. This combination, together with the possibility to functionalize their surface at will, makes them good candidates to explore magnetism in the 2D limit and to fabricate mechanical resonators for selective gas sensing.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic representation of post-synthetic covalent functionalization versus the pre-synthetic functionalization used here.
Fig. 2: Bulk characterization of MUV-1-Cl.
Fig. 3: Atomically thin layers of MUV-1-Cl.
Fig. 4: Surface modification in MUV-1-X.
Fig. 5: MUV-1-Cl suspended membranes.

References

  1. 1.

    Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015).

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    Mañas-Valero, S., García-López, V., Cantarero, A. & Galbiati, M. Raman spectra of ZrS2 and ZrSe2 from bulk to atomically thin layers. Appl. Sci. 6, 264 (2016).

    Article  CAS  Google Scholar 

  4. 4.

    Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Carvalho, A. et al. Phosphorene: from theory to applications. Nat. Rev. Mater. 1, 16061 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    Acerce, M., Voiry, D. & Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotech. 10, 313–318 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    Xu, C. et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 14, 1135–1141 (2015).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    El-Bana, M. S. et al. Superconductivity in two-dimensional NbSe2 field effect transistors. Supercond. Sci. Technol. 26, 125020 (2013).

    Article  CAS  Google Scholar 

  9. 9.

    Navarro-Moratalla, E. et al. Enhanced superconductivity in atomically thin TaS2. Nat. Commun. 7, 11043 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Hardy, W. J. et al. Thickness-dependent and magnetic-field-driven suppression of antiferromagnetic order in thin V5S8 single crystals. ACS Nano 10, 5941–5946 (2016).

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Lee, J.-U. et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 16, 7433–7438 (2016).

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Diercks, C. S. & Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 355, 1585 (2017).

    Article  CAS  Google Scholar 

  15. 15.

    Liu, W. et al. A two-dimensional conjugated aromatic polymer via C–C coupling reaction. Nat. Chem. 9, 563–570 (2017).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Rodríguez-San-Miguel, D., Amo-Ochoa, P. & Zamora, F. MasterChem: cooking 2D-polymers. Chem. Commun. 52, 4113–27 (2016).

    Article  CAS  Google Scholar 

  17. 17.

    Peng, Y. et al. Metal–organic framework nanosheets as building blocks for molecular sieving membranes. Science 346, 1356–1359 (2014).

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Rodenas, T. et al. Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14, 48–55 (2015).

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Lahiri, N., Lotfizadeh, N., Tsuchikawa, R., Deshpande, V. V. & Louie, J. Hexaaminobenzene as a building block for a family of 2D coordination polymers. J. Am. Chem. Soc. 139, 19–22 (2017).

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Araki, T., Kondo, A. & Maeda, K. The first lanthanide organophosphonate nanosheet by exfoliation of layered compounds. Chem. Commun. 49, 552–554 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    Abhervé, A., Mañas-Valero, S., Clemente-León, M. & Coronado, E. Graphene related magnetic materials: micromechanical exfoliation of 2D layered magnets based on bimetallic anilate complexes with inserted [FeIII(acac2-trien)]+ and [FeIII(sal2-trien)]+ molecules. Chem. Sci. 6, 4665–4673 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Foster, J. A., Henke, S., Schneemann, A., Fischer, R. A. & Cheetham, A. K. Liquid exfoliation of alkyl-ether functionalised layered metal–organic frameworks to nanosheets. Chem. Commun. 52, 10474–10477 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Shi, W. et al. Surface modification of two-dimensional metal–organic layers creates biomimetic catalytic microenvironments for selective oxidation. Angew. Chem. Int. Ed. 56, 9704–9709 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    Peng, Y. et al. Two-dimensional metal–organic framework nanosheets for membrane-based gas separation. Angew. Chem. Int. Ed. 56, 9757–9761 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Lei, S. et al. Surface functionalization of two-dimensional metal chalcogenides by Lewis acid-base chemistry. Nat. Nanotech. 11, 465–471 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Gaur, A. P. S. et al. Surface energy engineering for tunable wettability through controlled synthesis of MoS2. Nano Lett. 14, 4314–4321 (2014).

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Faghani, A. et al. Controlled covalent functionalization of thermally reduced graphene oxide to generate defined bifunctional 2D nanomaterials. Angew. Chem. Int. Ed. 56, 2675–2679 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    Rettig, S. J., Storr, A., Summers, D. A., Thompson, R. C. & Trotter, J. Transition metal azolates from metallocenes. 2. Synthesis, X-ray structure, and magnetic properties of a three-dimensional polymetallic iron(ii) imidazolate complex, a low-temperature weak ferromagnet. J. Am. Chem. Soc. 119, 8675–8680 (1997).

    CAS  Article  Google Scholar 

  29. 29.

    Lines, M. E. The quadratic-layer antiferromagnet. J. Phys. Chem. Solids 31, 101–116 (1970).

    CAS  Article  Google Scholar 

  30. 30.

    Nguyen, L. et al. Atomic defects and doping of monolayer NbSe2. ACS Nano 11, 2894–2904 (2017).

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Rooney, A. P. et al. Observing imperfection in atomic interfaces for van der Waals heterostructures. Nano Lett. 17, 5222–5228 (2017).

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Hartmann, U. Magnetic force microscopy. Annu. Rev. Mater. Sci. 29, 53–87 (1999).

    CAS  Article  Google Scholar 

  33. 33.

    Serri, M. et al. Low-temperature magnetic force microscopy on single molecule magnet-based microarrays. Nano Lett. 17, 1899–1905 (2017).

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Zhu, X. et al. Signature of coexistence of superconductivity and ferromagnetism in two-dimensional NbSe2 triggered by surface molecular adsorption. Nat. Commun. 7, 11210 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Bunch, J. S. et al. Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007).

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Castellanos-Gomez, A. et al. Single-layer MoS2 mechanical resonators. Adv. Mater. 25, 6719–6723 (2013).

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Hermosa, C. et al. Mechanical and optical properties of ultralarge flakes of a metal–organic framework with molecular thickness. Chem. Sci. 6, 2553–2558 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Britnell, L. et al. Strong light–matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the European Comission (COST Action MOLSPIN CA15128, FET-OPEN 2D-INK 664878, ERC-2016-CoG 724681-S-CAGE and ERC-2018-AdG 788222 Mol-2D), the Spanish MINECO (Structures of Excellence María de Maeztu MDM-2015–0538 and Severo Ochoa SEV-2012-0267, projects CTQ2014-59209-P, CTQ2017-89528-P, MAT2017-89993-R, MAT2015-68200-C2-2-P and MAT2015-71842-P), the Generalitat Valenciana (Prometeo programme) and the VLC/Campus Program. G.M.E. thanks the Spanish MINECO for a Ramón y Cajal Fellowship. S.M.V. thanks MINECO for a predoctoral FPU grant (FPU14/04407). J.L.C. acknowledges the University of Valencia for an ‘Atracció de Talent’ grant. The C2TN/IST authors acknowledge the Portuguese Foundation for Science and Technology (FCT, contract UID/Multi/04349/2013). D.D., P.G.S. and H.S.J.v.d.Z. acknowledge the support of the Netherlands Organisation for Scientific Research (NWO/OCW), as part of the Frontiers of Nanoscience (NanoFront) programme and the European Union Seventh Framework Programme under grant agreement no. 604391 Graphene Flagship. The authors thank the Spanish CRG-D1B at Institut Laue-Langevin for allocated beamtime (project CRG-2402).

Author information

Affiliations

Authors

Contributions

J.L.C. and S.M.V. contributed equally to this work. J.L.C. synthetized and characterized all the materials in bulk. S.M.V. analysed the magnetic data and carried out the MFM measurements. S.M.V. performed the exfoliation and characterization of the exfoliated materials, assisted by J.L.C. I.J.V.Y. contributed to solution and refinement of the structures from single crystal data with the help of G.M.E. P.J.B. conducted the TEM studies with contributions from J.L.C. and S.M.V. J.A.R.V. performed the neutron diffraction studies. J.C.W. and B.J.C.V. performed the Mossbauer characterization. D.D., P.G.S. and H.S.J.v.d.Z. characterized the nanomechanical resonators. G.M.E. and E.C. conceived and designed the experiments. J.L.C., S.M.V., G.M.E. and E.C. prepared the manuscript. All authors commented on the manuscript.

Corresponding authors

Correspondence to G. Mínguez Espallargas or E. Coronado.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Additional synthesis and characterization data; Supplementary Figures 1–45; Supplementary references 1–17

Crystallographic data

CIF for compound MUV-1-Cl; CCDC reference: 1582350

Crystallographic data

CIF for compound MUV-1-H; CCDC reference: 1582348

Crystallographic data

CIF for compound MUV-1-CH3; CCDC reference: 1582347

Crystallographic data

CIF for compound MUV-1-Br; CCDC reference: 1849147

Crystallographic data

CIF for compound MUV-1-NH2; CCDC reference: 1582349

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

López-Cabrelles, J., Mañas-Valero, S., Vitórica-Yrezábal, I.J. et al. Isoreticular two-dimensional magnetic coordination polymers prepared through pre-synthetic ligand functionalization. Nature Chem 10, 1001–1007 (2018). https://doi.org/10.1038/s41557-018-0113-9

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing