Article | Published:

Activation of diverse carbon–heteroatom and carbon–carbon bonds via palladium(ii)-catalysed β-X elimination

Nature Chemistryvolume 10pages11261133 (2018) | Download Citation

Abstract

Chemists’ ability to synthesize structurally complex, high-value organic molecules from simple starting materials is limited by methods to selectively activate and functionalize strong alkyl C(sp3) covalent bonds. Recent activity has focused on the activation of abundant C–O, C–N and C–C bonds via a mechanistic paradigm of oxidative addition of a low-valent, electron-rich transition metal. This approach typically employs nickel(0), rhodium(i), ruthenium(0) and iron catalysts under conditions finely tuned for specific, electronically activated substrates, sometimes assisted by chelating functional groups or ring strain. By adopting a redox-neutral strategy involving palladium(ii)-catalysed C–H activation followed by β-heteroatom/carbon elimination, we describe here a catalytic method to activate alkyl C(sp3)–oxygen, nitrogen, carbon, fluorine and sulfur bonds with high regioselectivity. Directed hydrofunctionalization of the resultant palladium(ii)-bound alkene leads to formal functional group metathesis. The method is applied to amino acid upgrading with complete regioselectivity and moderate to high retention of enantiomeric excess. Low-strain heterocycles undergo strong-bond activation and substitution, giving ring-opened products.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Yu, D.-G., Li, B.-J. & Shi, Z.-J. Exploration of new C–O electrophiles in cross-coupling reactions. Acc. Chem. Res. 43, 1486–1495 (2010).

  2. 2.

    Rosen, B. M. et al. Nickel-catalyzed cross-coupling involving carbon–oxygen bonds. Chem. Rev. 111, 1346–1416 (2011).

  3. 3.

    Cornella, J., Zarate, C. & Martin, R. Metal-catalyzed activation of ethers via C–O bond cleavage: a new strategy for molecular diversity. Chem. Soc. Rev. 43, 8081–8097 (2014).

  4. 4.

    Dermenci, A., Coe, J. W. & Dong, G. Direct activation of relatively unstrained carbon–carbon bonds in homogeneous systems. Org. Chem. Front. 1, 567–581 (2014).

  5. 5.

    Huang, C.-Y. & Doyle, A. G. The chemistry of transition metals with three-membered ring heterocycles. Chem. Rev. 114, 8153–8198 (2014).

  6. 6.

    Tobisu, M. & Chatani, N. Cross-couplings using aryl ethers via C–O bond activation enabled by nickel catalysts. Acc. Chem. Res. 48, 1717–1726 (2015).

  7. 7.

    Tobisu, M. & Chatani, N. Nickel-catalyzed cross-coupling reactions of unreactive phenolic electrophiles via C–O bond activation. Top. Curr. Chem. 374, 41 (2016).

  8. 8.

    Zarate, C., van Gemmeren, M., Somerville, R. J. & Martin, R. Phenol derivatives: modern electrophiles in cross-coupling reactions. Adv. Organomet. Chem. 66, 143–222 (2016).

  9. 9.

    Chen, P.-H., Billett, B. A., Tsukamoto, T. & Dong, G. ‘Cut and sew’ transformations via transition-metal-catalyzed carbon–carbon bond activation. ACS Catal. 7, 1340–1360 (2017).

  10. 10.

    Dander, J. E. & Garg, N. K. Breaking amides using nickel catalysis. ACS Catal. 7, 1413–1423 (2017).

  11. 11.

    Matsunaga, P. T. & Hillhouse, G. L. Thianickelacycles by ring-opening reactions of cyclic thioethers and their subsequent carbonylation to thioesters. Angew. Chem. Int. Ed. 33, 1748–1749 (1994).

  12. 12.

    Lin, B. L., Clough, C. R. & Hillhouse, G. L. Interactions of aziridines with nickel complexes: oxidative-addition and reductive-elimination reactions that break and make C–N bonds. J. Am. Chem. Soc. 124, 2890–2891 (2002).

  13. 13.

    Dankwardt, J. W. Nickel-catalyzed cross-coupling of aryl Grignard reagents with aromatic alkyl ethers: an efficient synthesis of unsymmetrical biaryls. Angew. Chem. Int. Ed. 43, 2428–2432 (2004).

  14. 14.

    Ueno, S., Mizushima, E., Chatani, N. & Kakiuchi, F. Direct observation of the oxidative addition of the aryl carbon–oxygen bond to a ruthenium complex and consideration of the relative reactivity between aryl carbon–oxygen and aryl carbon–hydrogen bonds. J. Am. Chem. Soc. 128, 16516–16517 (2006).

  15. 15.

    Quasdorf, K. W., Riener, M., Petrova, K. V. & Garg, N. K. Suzuki–Miyaura coupling of aryl carbamates, carbonates, and sulfamates. J. Am. Chem. Soc. 131, 17748–17749 (2009).

  16. 16.

    Barbero, N. & Martin, R. Ligand-free Ni-catalyzed reductive cleavage of inert carbon–sulfur bonds. Org. Lett. 14, 796–799 (2012).

  17. 17.

    Sergeev, A. G., Webb, J. D. & Hartwig, J. F. A heterogeneous nickel catalyst for the hydrogenolysis of aryl ethers without arene hydrogenation. J. Am. Chem. Soc. 134, 20226–20229 (2012).

  18. 18.

    Juliá-Hernández, F., Ziadi, A., Nishimura, A. & Martin, R. Nickel-catalyzed chemo-, regio- and diastereoselective bond formation through proximal C–C cleavage of benzocyclobutenones. Angew. Chem. Int. Ed. 54, 9537–9541 (2015).

  19. 19.

    Liu, X.-W., Echavarren, J., Zarate, C. & Martin, R. Ni-catalyzed borylation of aryl fluorides via C–F cleavage. J. Am. Chem. Soc. 137, 12470–12473 (2015).

  20. 20.

    Hie, L. et al. Nickel-catalyzed activation of acyl C–O bonds of methyl esters. Angew. Chem. Int. Ed. 55, 2810–2814 (2016).

  21. 21.

    Moragas, T., Gaydou, M. & Martin, R. Nickel-catalyzed carboxylation of benzylic C–N bonds with CO2. Angew. Chem. Int. Ed. 55, 5053–5057 (2016).

  22. 22.

    van der Boom, M. E., Liou, S.-Y., Ben-David, Y., Shimon, L. J. W. & Milstein, D. Alkyl– and aryl–oxygen bond activation in solution by rhodium(i), palladium(ii), and nickel(ii). Transition-metal-based selectivity. J. Am. Chem. Soc. 120, 6531–6541 (1998).

  23. 23.

    Lara, P. et al. Formation and cleavage of C–H, C–C, and C–O bonds of ortho-methyl-substituted anisoles by late transition metals. J. Am. Chem. Soc. 128, 3512–3513 (2006).

  24. 24.

    Fulmer, G. R., Muller, R. P., Kemp, R. A. & Goldberg, K. I. Hydrogenolysis of palladium(ii) hydroxide and methoxide pincer complexes. J. Am. Chem. Soc. 131, 1346–1347 (2009).

  25. 25.

    Santos, L. L., Mereiter, K. & Paneque, M. Reaction of 2-methylanisole with TpMe2Ir(C6H5)2(N2): a comprehensive set of activations. Organometallics 32, 565–569 (2013).

  26. 26.

    Edouard, G. A., Kelley, P., Herbert, D. E. & Agapie, T. Aryl ether cleavage by group 9 and 10 transition metals: stoichiometric studies of selectivity and mechanism. Organometallics 34, 5254–5277 (2015).

  27. 27.

    Chu, T., Boyko, Y., Korobkov, I. & Nikonov, G. I. Transition metal-like oxidative addition of C–F and C–O bonds to an aluminum(i) center. Organometallics 34, 5363–5365 (2015).

  28. 28.

    Crimmin, M. R., Butler, M. J. & White, A. J. P. Oxidative addition of carbon–fluorine and carbon–oxygen bonds to Al(i). Chem. Commun. 51, 15994–15996 (2015).

  29. 29.

    Henry, P. M. Palladium(ii)-catalyzed exchange and isomerization reactions. IV. Exchange of vinylic chloride with radioactive lithium chloride catalyzed by palladium(ii) chloride in acetic acid. J. Org. Chem. 37, 2443–2447 (1972).

  30. 30.

    Henry, P. M. Palladium(ii)-catalyzed exchange and isomerization reactions. Acc. Chem. Res. 6, 16–24 (1973).

  31. 31.

    Catellani, M. & Fagnola, M. C. Palladacycles as intermediates for selective dialkylation of arenes and subsequent fragmentation. Angew. Chem. Int. Ed. 33, 2421–2422 (1995).

  32. 32.

    Zhao, H., Ariafard, A. & Lin, Z. β-Heteroatom versus β-hydrogen elimination: a theoretical study. Organometallics 25, 812–819 (2006).

  33. 33.

    Yang, J., Mercer, G. J. & Nguyen, H. M. Palladium-catalyzed glycal imidate rearrangement: formation of α- and β-N-glycosyl trichloroacetamides. Org. Lett. 9, 4231–4234 (2007).

  34. 34.

    White, P. B. & Stahl, S. S. Reversible alkene insertion into the Pd–N bond of Pd(ii)-sulfonamidates and implications for catalytic amidation reactions. J. Am. Chem. Soc. 133, 18594–18597 (2011).

  35. 35.

    Jana, R., Pathak, T. P., Jensen, K. H. & Sigman, M. S. Palladium(ii)-catalyzed enantio- and diastereoselective synthesis of pyrrolidine derivatives. Org. Lett. 14, 4074–4077 (2012).

  36. 36.

    Choi, J. et al. Cleavage of sp 3 C–O bonds via oxidative addition of C–H bonds. J. Am. Chem. Soc. 131, 15627–15629 (2009).

  37. 37.

    Choi, J. et al. Net oxidative addition of C(sp 3)–F bonds to iridium via initial C–H bond activation. Science 332, 1545–1548 (2011).

  38. 38.

    Haibach, M. C., Lease, N. & Goldman, A. S. Catalytic cleavage of ether C–O bonds by pincer iridium complexes. Angew. Chem. Int. Ed. 53, 10160–10163 (2014).

  39. 39.

    Ogiwara, Y., Kochi, T. & Kakiuchi, F. Ruthenium-catalyzed conversion of sp 3 C–O bonds in ethers to C–C bonds using triarylboroxines. Org. Lett. 13, 3254–3257 (2011).

  40. 40.

    Luo, S. et al. Fe-promoted cross coupling of homobenzylic methyl ethers with Grignard reagents via sp 3 C–O bond cleavage. Chem. Commun. 49, 7794–7796 (2013).

  41. 41.

    Zaitsev, V. G., Shabashov, D. & Daugulis, O. Highly regioselective arylation of sp 3 C–H bonds catalyzed by palladium acetate. J. Am. Chem. Soc. 127, 13154–13155 (2005).

  42. 42.

    Gurak, J. A. Jr., Yang, K. S., Liu, Z. & Engle, K. M. Directed, regiocontrolled hydroamination of unactivated alkenes via protodepalladation. J. Am. Chem. Soc. 138, 5805–5808 (2016).

  43. 43.

    Yang, K., Gurak, J. A. Jr., Liu, Z. & Engle, K. M. Catalytic, regioselective hydrocarbofunctionalization of unactivated alkenes with diverse C–H nucleophiles. J. Am. Chem. Soc. 138, 14705–14712 (2016).

  44. 44.

    Gurak, J. A. Jr., Tran, V. T., Sroda, M. M. & Engle, K. M. N-alkylation of 2-pyridone derivatives via palladium(ii)-catalyzed directed alkene hydroamination. Tetrahedron 73, 3636–3642 (2017).

  45. 45.

    Wada, S. & Jordan, R. F. Olefin insertion into a Pd–F bond: catalyst reactivation following β-F elimination in ethylene/vinyl fluoride copolymerization. Angew. Chem. Int. Ed. 129, 1846–1850 (2017).

  46. 46.

    Ichikawa, J., Nadano, R., & Ito, N. 5-endo Heck-type cyclization of 2-(trifluoromethyl)allyl ketone oximes: synthesis of 4-difluoromethylene-substituted 1-pyrrolines. Chem. Commun 4425–4427 (2006).

  47. 47.

    Li, Y., Yang, W., Cheng, G. & Yang, D. Palladium-catalyzed syn-stereocontrolled ring-opening of oxabicyclic alkenes with sodium arylsulfinates. J. Org. Chem. 81, 4744–4750 (2016).

Download references

Acknowledgements

This work was financially supported by TSRI, Bristol-Myers Squibb (Unrestricted Grant), Pfizer, Inc., and the National Institutes of Health (1R35GM125052). We also gratefully acknowledge the following graduate fellowship programs: Frank J. Dixon Fellowship (V.T.T.), Donald E. and Delia B. Baxter Foundation (J.A.G.), and the National Science Foundation (NSF/DGE-1346837) (J.A.G.). We thank Dr. Jason S. Chen for determination of enantiomeric excess, along with Dr. Dee-Hua Huang and Dr. Laura Pasternack for assistance with NMR spectroscopy. We also thank Prof. Arnold L. Rheingold, Dr. Milan Gembicky, and Dr. Curtis E. Moore (UCSD) for X-ray crystallographic analysis. Prof. Jin-Quan Yu is thanked for helpful discussions.

Author information

Affiliations

  1. Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA

    • Van T. Tran
    • , John A. Gurak Jr
    • , Kin S. Yang
    •  & Keary M. Engle

Authors

  1. Search for Van T. Tran in:

  2. Search for John A. Gurak Jr in:

  3. Search for Kin S. Yang in:

  4. Search for Keary M. Engle in:

Contributions

V.T.T., J.A.G., K.S.Y., and K.M.E. conceived this work. V.T.T. and J.A.G. performed the experiments and analyzed the data. V.T.T. and K.M.E. wrote the manuscript with input from J.A.G. and K.S.Y.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Keary M. Engle.

Supplementary information

  1. Supplementary information

    General information, optimization data, mechanistic studies, substrate synthesis, general procedures, additional references and characterization data

  2. Crystallographic data

    CIF for compound 1m’; CCDC reference: 1840316

  3. Crystallographic data

    CIF for compound S1; CCDC reference: 1840315

  4. NMR data

    Original NMR data in FID format

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41557-018-0110-z