Abstract

The unique properties of graphene, transition-metal dichalcogenides and other two-dimensional (2D) materials have boosted interest in layered coordination solids. In particular, 2D materials that behave as both conductors and magnets could find applications in quantum magnetoelectronics and spintronics. Here, we report the synthesis of CrCl2(pyrazine)2, an air-stable layered solid, by reaction of CrCl2 with pyrazine (pyz). This compound displays a ferrimagnetic order below 55 K, reflecting the presence of strong magnetic interactions. Electrical conductivity measurements demonstrate that CrCl2(pyz)2 reaches a conductivity of 32 mS cm–1 at room temperature, which operates through a 2D hopping-based transport mechanism. These properties are induced by the redox-activity of the pyrazine ligand, which leads to a smearing of the Cr 3d and pyrazine π states. We suggest that the combination of redox-active ligands and reducing paramagnetic metal ions represents a general approach towards tuneable 2D materials that consist of charge-neutral layers and exhibit both long-range magnetic order and high electronic conductivity.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

All data generated and analysed in this study are included in the Article and its Supplementary Information, and are also available from the authors upon request. Crystallographic information has been deposited in the Cambridge Crystallographic Data Centre under accession codes CCDC 1563526 (CrCl2(pyz)2) and CCDC 1563527 (Cr(iii)).

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

  2. 2.

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

  3. 3.

    Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

  4. 4.

    Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystals down to the monolayer limit. Nature 546, 270–273 (2017).

  5. 5.

    Han, W., Kawakami, R. K., Gmitra, M. & Fabian, J. Graphene spintronics. Nat. Nanotech. 9, 794–807 (2014).

  6. 6.

    Tian, Y. et al. Observation of resonant quantum magnetoelectric effect in a multiferroic metal–organic framework. J. Am. Chem. Soc. 138, 782–785 (2016).

  7. 7.

    Gómez-Aguirre, L. C. et al. Magnetic ordering-induced multiferroic behavior in [CH3NH3][Co(HCOO)3] metal–organic framework. J. Am. Chem. Soc. 138, 1122–1125 (2016).

  8. 8.

    Dietl, T., Ohni, H., Matsukura, F., Cibert, J. & Ferrand, D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000).

  9. 9.

    Yu, J. H. et al. Giant Zeeman splitting in nucleation-controlled doped CdSe:Mn2+ quantum nanoribbons. Nat. Mater. 9, 47–53 (2010).

  10. 10.

    Miller, J. S. Magnetically ordered molecule-based materials. Chem. Soc. Rev. 40, 3266–3296 (2011).

  11. 11.

    Batail, P. Molecular conductors. Chem. Rev. 104, 4887–5782 (2004).

  12. 12.

    Coronado, E., Galán-Mascarós, J. R., Gómez-García, C. J. & Laukhin, V. Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound. Nature 408, 447–449 (2000).

  13. 13.

    Coronado, E. & Day, P. Magnetic molecular conductors. Chem. Rev. 104, 5419–5448 (2004).

  14. 14.

    Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

  15. 15.

    Hermosa, C. et al. Mechanical and optical properties of ultralarge flakes of a metal–organic framework with molecular thickness. Chem. Sci. 6, 2553–2558 (2015).

  16. 16.

    Givaja, G., Amo-Ochoa, P., Gómez-García, C. J. & Zamora, F. Electrical conductive coordination polymers. Chem. Soc. Rev. 41, 115–147 (2012).

  17. 17.

    Sun, L., Campbell, M. G. & Dincă, M. Electrically conductive porous metal–organic frameworks. Angew. Chem. Int. Ed. 55, 3566–3579 (2016).

  18. 18.

    Kambe, T. et al. π-Conjugated nickel bis(dithiolene) complex nanosheet. J. Am. Chem. Soc. 135, 2462–2465 (2013).

  19. 19.

    Sheberla, D. et al. High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal–organic graphene analogue. J. Am. Chem. Soc. 136, 8859–8862 (2014).

  20. 20.

    Huang, X. et al. A two-dimensional πd conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour. Nat. Commun. 6, 7408 (2015).

  21. 21.

    Maeda, H., Sakamoto, R. & Nishihara, H. Coordination programming of two-dimensional metal complex frameworks. Langmuir 32, 2527–2538 (2016).

  22. 22.

    Dou, J.-H. et al. Signature of metallic behaviour in the metal–organic frameworks M3(hexaiminobenzene)2 (M = Ni, Cu). J. Am. Chem. Soc. 139, 13608–13611 (2017).

  23. 23.

    Darago, L. E., Aubrey, M. L., Yu, C. J., Gonzalez, M. I. & Long, J. R. Electronic conductivity, ferrimagnetic ordering, and reductive insertion mediated by organic mixed-valence in a ferric semiquinoid metal–organic framework. J. Am. Chem. Soc. 137, 15703–15711 (2015).

  24. 24.

    DeGayner, J. A., Jeon, I.-R., Sun, L., Dincă, M. & Harris, T. D. 2D conductive iron-quinoid magnets ordering up to T c = 105 via heterogeneous redox chemistry. J. Am. Chem. Soc. 139, 4175–4184 (2017).

  25. 25.

    Murase, R. et al. Mixed valency in a 3D semiconducting iron-fluoranilate coordination polymer. Inorg. Chem. 56, 9025–9035 (2017).

  26. 26.

    Chirik, P. J. & Wieghardt, K. Radical ligands confer nobility on base-metal catalysts. Science 327, 794–795 (2010).

  27. 27.

    Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. The Cambridge Structural Database. Acta Crystallogr. B 72, 171–179 (2016).

  28. 28.

    McDowell, C. A., Paulus, K. F. & Rowlands, J. R. Electron-spin resonance spectra of some diazine radical anions. Proc. Chem. Soc. 0, 60–61 (1962).

  29. 29.

    Zhang, X. et al. Stabilizing and color tuning pyrazine radicals by coordination for photochromism. Chem. Commun. 52, 7947–7949 (2016).

  30. 30.

    Dunne, T. G. & Hurst, J. K. Kinetic and thermodynamic properties of chromium(iii) complexes containing pyrazine radical ligands. Inorg. Chem. 19, 1152–1157 (1980).

  31. 31.

    Swartz, J. & Anson, F. C. Electrochemistry of the intensely green complexes formed by the reaction of Cr2+ with pyrazine (‘pyrazine green’), pyrazinecarboxamide, and pyrazinecarboxylic acid. Inorg. Chem. 20, 2250–2257 (1981).

  32. 32.

    Cotton, F. A. et al. Experimental and theoretical study of a paradigm Jahn–Teller molecule, all-trans-CrCl2(H2O)2(pyridine)2, and the related trans-CrCl2(pyridine)4·acetone. Inorg. Chim. Acta 235, 21–28 (1995).

  33. 33.

    Cotton, F. A., Favello, L. R., Murillo, C. & Quesada, J. F. A completely suppressed Jahn–Teller effect in the structure of hexaaquachromium(ii) hexafluorosilicate. J. Solid State Chem. 96, 192–198 (1992).

  34. 34.

    Scarborough, C. C. et al. Scrutinizing low-spin Cr(ii) complexes. Inorg. Chem. 51, 6969–6982 (2012).

  35. 35.

    Glaser, T., Hedman, B., Hodgson, K. O. & Solomon, E. I. Ligand K-edge X-ray absorption spectroscopy: a direct probe of ligand-metal covalency. Acc. Chem. Res. 33, 859–868 (2000).

  36. 36.

    Miyazaki, A. et al. Crystal structure and physical properties of conducting molecular antiferromagnets with a halogen-substituted donor: (EDO-TTFBr2)2FeX4 (X = Cl, Br). Inorg. Chem. 46, 3353–3366 (2007).

  37. 37.

    Solovyev, I. V., Dederichs, P. H. & Mertig, I. Origin of orbital magnetization and magnetocrystalline anisotropy in TX ordered alloys (where T = Fe, Co and X = Pd, Pt). Phys. Rev. B 52, 13419–13428 (1995).

  38. 38.

    Kawamura, N. et al. Multielectron excitations probed by helicity-modulation XMCD a K-edge in 3d transition metal compounds. J. Synchrotron Rad. 8, 410–412 (2001).

  39. 39.

    Bredas, J. L. & Street, G. B. Polarons, bipolarons, and solitons in conducting polymers. Acc. Chem. Res. 18, 309–315 (1985).

  40. 40.

    Benoit, C., Bernard, O., Palpacuer, M., Rolland, M. & Abadie, M. J. M. Infrared transmission of heavily doped polyacetylene. J. Phys. Fr. 44, 1307–1316 (1983).

  41. 41.

    Dinolfo, P. H., Williams, M. E., Stern, C. L. & Hupp, J. T. Rhenium-based molecular rectangles as frameworks for ligand-centered mixed valency and optical electron transfer. J. Am. Chem. Soc. 126, 12989–13001 (2004).

  42. 42.

    Jérome, D. Organic conductors: from charge density wave TTF-TCNQ to superconducting (TMTSF)2PF6. Chem. Rev. 104, 5565–5591 (2004).

  43. 43.

    Roth, S. & Carroll, D. One-dimensional Metals: Conjugated Polymers, Organic Crystals, Carbon Nanotubes and Graphene (Wiley, New York, 2015).

  44. 44.

    Foster, M. E., Sohlberg, K., Allendorf, M. D. & Talin, A. A. Unraveling the semiconducting/metallic discrepancy in Ni3(HITP)2. J. Phys. Chem. Lett. 9, 481–486 (2018).

  45. 45.

    Li, W. et al. High temperature ferromagnetism in π-conjugated two-dimensional metal–organic frameworks. Chem. Sci. 8, 2859–2867 (2017).

  46. 46.

    Kaim, W. & Schwederski, B. Non-innocent ligands in bioinorganic chemistry—an overview. Coord. Chem. Rev. 254, 1580–1588 (2010).

  47. 47.

    Rodríguez-San-Miguel, D., Amo-Ochoa, P. & Zamora, F. MasterChem: cooking 2D-polymers. Chem. Commun. 52, 4113–4127 (2016).

  48. 48.

    Bourges, P., Casalta, H., Ivanov, A. S. & Petitgrand, D. Superexchange coupling and spin susceptibility spectral weight in undoped monolayer cuprates. Phys. Rev. Lett. 79, 4906–4909 (1997).

  49. 49.

    Walters, A. C. et al. Effect of covalent bonding on magnetism and the missing neutron intensity in copper oxide compounds. Nat. Phys. 5, 867–872 (2009).

Download references

Acknowledgements

K.S.P. thanks the VILLUM Foundation for a VILLUM Young Investigator grant (15374). K.S.P. and R.C. thank the Danish Research Council for Independent Research for a DFF-Sapere Aude Research Talent grant (4090-00201), the University of Bordeaux, the Région Aquitaine, the CNRS, the GdR MCM-2: Magnétisme et Commutation Moléculaires and the MOLSPIN COST action CA15128. M.L.A. and J.R.L. thank the National Science Foundation (grant DMR-1611525) for funding support. K.B. is thankful for funding by the Danish National Research Foundation (Center for Materials Crystallography, DNRF93). D.N.W. thanks the Diamond Light Source Ltd for beam time (I11; EE13284). Theory and computation were supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (Theory FWP) Materials Sciences and Engineering Division (DE-AC02-05CH11231). R.C. and J.R.L. are grateful to the France-Berkeley Fund and the CNRS for PICS no. 06485. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231. J. Bendix, E. Suturina, B. B. Iversen, L. E. Darago, F. Hof, T. Maris and E. Lebraud are thanked for experimental assistance and helpful discussions.

Author information

Author notes

    • Dumitru Samohvalov

    Present address: Sara Pharm Solutions, Bucharest, Romania

Affiliations

  1. CNRS, CRPP, UMR 5031, Pessac, France

    • Kasper S. Pedersen
    • , Panagiota Perlepe
    • , Mathieu Rouzières
    • , Dumitru Samohvalov
    •  & Rodolphe Clérac
  2. Univ. Bordeaux, CRPP, UMR 5031, Pessac, France

    • Kasper S. Pedersen
    • , Panagiota Perlepe
    • , Mathieu Rouzières
    • , Dumitru Samohvalov
    •  & Rodolphe Clérac
  3. Department of Chemistry, Technical University of Denmark, Lyngby, Denmark

    • Kasper S. Pedersen
    •  & Laura Voigt
  4. CNRS, ICMCB, UMR 5026, Pessac, France

    • Panagiota Perlepe
  5. Univ. Bordeaux, ICMCB, UMR 5026, Pessac, France

    • Panagiota Perlepe
  6. Department of Chemistry, University of California Berkeley, Berkeley, CA, USA

    • Michael L. Aubrey
    •  & Jeffrey R. Long
  7. Department of Chemistry, University of Oxford, Oxford, UK

    • Daniel N. Woodruff
  8. Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

    • Sebastian E. Reyes-Lillo
    •  & Jeffrey B. Neaton
  9. Department of Physics, University of California Berkeley, Berkeley, CA, USA

    • Sebastian E. Reyes-Lillo
    •  & Jeffrey B. Neaton
  10. Departamento de Ciencias Físicas, Universidad Andres Bello, Santiago, Chile

    • Sebastian E. Reyes-Lillo
  11. Department of Chemistry, University of Copenhagen, Copenhagen, Denmark

    • Anders Reinholdt
  12. Department of Physics and Astronomy – Centre for Storage Ring Facilities (ISA), Aarhus University, Aarhus, Denmark

    • Zheshen Li
  13. Center for Materials Crystallography, Department of Chemistry and iNano, Aarhus, Denmark

    • Kasper Borup
  14. ESRF – The European Synchrotron, Grenoble, France

    • Fabrice Wilhelm
    •  & Andrei Rogalev
  15. Kavli Energy Nanosciences Institute at Berkeley, Berkeley, CA, USA

    • Jeffrey B. Neaton
  16. Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA

    • Jeffrey R. Long
  17. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

    • Jeffrey R. Long

Authors

  1. Search for Kasper S. Pedersen in:

  2. Search for Panagiota Perlepe in:

  3. Search for Michael L. Aubrey in:

  4. Search for Daniel N. Woodruff in:

  5. Search for Sebastian E. Reyes-Lillo in:

  6. Search for Anders Reinholdt in:

  7. Search for Laura Voigt in:

  8. Search for Zheshen Li in:

  9. Search for Kasper Borup in:

  10. Search for Mathieu Rouzières in:

  11. Search for Dumitru Samohvalov in:

  12. Search for Fabrice Wilhelm in:

  13. Search for Andrei Rogalev in:

  14. Search for Jeffrey B. Neaton in:

  15. Search for Jeffrey R. Long in:

  16. Search for Rodolphe Clérac in:

Contributions

K.S.P. and R.C. conceived, planned and designed the research project. K.S.P., P.P., D.W., A.R. and D.S. executed the syntheses and the chemical and crystallographic analyses. L.V. obtained and analysed the scanning electron microscopy data. M.L.A., M.R., P.P., J.R.L. and R.C. performed and analysed the electrical conductivity experiments. M.R., K.S.P. and R.C. performed and analysed the magnetic susceptibility measurements. Z.L. and K.S.P. obtained and analysed the UPS and NIR–IR data. K.B. and K.S.P. obtained and analysed the Seebeck measurements. S.E.R.-L., J.N. and K.S.P. performed the DFT studies. F.W., A.R., K.S.P., P.P. and R.C. executed the X-ray spectroscopy experiments and analysed the results. All coauthors were involved in the writing of the manuscript and they have all given their consent to its publication.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Kasper S. Pedersen or Rodolphe Clérac.

Supplementary information

  1. Supplementary Information

    Additional experimental and computation details; structural, magnetic, electronic, spectroscopic and computational data; Supplementary Figures 1–15; Supplementary Table 1 and Supplementary References 1–23

  2. Crystallographic data

    CIF for compound CrCl2(pyz)2; CCDC reference: 1563526

  3. Crystallographic data

    CIF for compound Cr(iii); CCDC reference: 1563527

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41557-018-0107-7