Article | Published:

Light-driven molecular trap enables bidirectional manipulation of dynamic covalent systems

Nature Chemistryvolume 10pages10311036 (2018) | Download Citation


Bond formation between two molecular entities in a closed system strictly obeys the principle of microscopic reversibility and occurs in favour of the thermodynamically more stable product. Here, we demonstrate how light can bypass this fundamental limitation by driving and controlling the reversible bimolecular reaction between an N-nucleophile and a photoswitchable carbonyl electrophile. Light-driven tautomerization cycles reverse the reactivity of the C=O/C=N-electrophiles (‘umpolung’) to activate substrates and remove products, respectively, solely depending on the illumination wavelength. By applying either red or blue light, selective and nearly quantitative intermolecular bond formation/scission can be achieved, even if the underlying condensation/hydrolysis equilibrium is thermodynamically disfavoured. Exploiting light-driven in situ C=N exchange, our approach can be used to externally regulate a closed dynamic covalent system by actively and reversibly removing specific components, resembling a molecular and bidirectional version of a macroscopic Dean–Stark trap.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Astumian, R. D. Microscopic reversibility as the organizing principle of molecular machines. Nat. Nanotech. 7, 684–688 (2012).

  2. 2.

    Boltzmann, L. Über die Beziehung zwischen dem zweiten Hauptsatz der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über das Wärmegleichgewicht. Wien. Ber. 76, 373–435 (1877).

  3. 3.

    Qian, H. Phosphorylation energy hypothesis: open chemical systems and their biological functions. Annu. Rev. Phys. Chem. 58, 113–142 (2007).

  4. 4.

    Schultz, D. M. & Yoon, T. P. Solar synthesis: prospects in visible light photocatalysis. Science 343, 1239176 (2014).

  5. 5.

    Shaw, M. H., Twilton, J. & MacMillan, D. W. C. Photoredox catalysis in organic chemistry. J. Org. Chem. 81, 6898–6926 (2016).

  6. 6.

    Feringa, B. L & Browne, W. R. Molecular Switches (Wiley-VCH, Weinheim, 2011).

  7. 7.

    Bandara, H. M. D. & Burdette, S. C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 41, 1809–1825 (2012).

  8. 8.

    Klajn, R. Spiropyran-based dynamic materials. Chem. Soc. Rev. 43, 148–184 (2014).

  9. 9.

    Irie, M., Fukaminato, T., Matsuda, K. & Kobatake, S. Photochromism of diarylethene molecules and crystals. Chem. Rev. 114, 12174–12277 (2014).

  10. 10.

    Kathan, M. & Hecht, S. Photoswitchable molecules as key ingredients to drive systems away from global thermodynamic minimum. Chem. Soc. Rev. 46, 5536–5550 (2017).

  11. 11.

    Lemieux, V., Gauthier, S. & Branda, N. R. Selective and sequential photorelease using molecular switches. Angew. Chem. Int. Ed. 45, 6820–6824 (2006).

  12. 12.

    Samachetty, H. D. & Branda, N. R. Integrating molecular switching and chemical reactivity using photoresponsive hexatrienes. Pure Appl. Chem. 78, 2351–2359 (2006).

  13. 13.

    Sud, D., Wigglesworth, T. J. & Branda, N. R. Creating a reactive enediyne by using visible light: photocontrol of the Bergman cyclization. Angew. Chem. Int. Ed. 46, 8017–8019 (2007).

  14. 14.

    Erno, Z., Asadirad, A. M., Lemieux, V. & Branda, N. R. Using light and a molecular switch to ‘lock’ and ‘unlock’ the Diels–Alder reaction. Org. Biomol. Chem. 10, 2787–2792 (2012).

  15. 15.

    Wilson, D. & Branda, N. R. Turning ‘on’ and ‘off’ a pyridoxal 5′-phosphate mimic using light. Angew. Chem. Int. Ed. 51, 5431–5434 (2012).

  16. 16.

    Göstl, R., Senf, A. & Hecht, S. Remote-controlling chemical reactions by light: towards chemistry with high spatio-temporal resolution. Chem. Soc. Rev. 43, 1982–1996 (2014).

  17. 17.

    Belowich, M. E. & Stoddart, J. F. Dynamic imine chemistry. Chem. Soc. Rev. 41, 2003–2024 (2012).

  18. 18.

    Corbett, P. T. et al. Dynamic combinatorial chemistry. Chem. Rev. 106, 3652–3771 (2006).

  19. 19.

    Lehn, J.-M. Perspectives in chemistry—aspects of adaptive chemistry and materials. Angew. Chem. Int. Ed. 54, 3276–3289 (2015).

  20. 20.

    Seebach, D. Methods of reactivity umpolung. Angew. Chem. Int. Ed. 18, 239–258 (1979).

  21. 21.

    Le Chatelier, H. Sur un énoncé général des lois des équilibres chimiques. Compte Rendus Acad. Sci. 99, 786–789 (1884).

  22. 22.

    Chatterjee, M. N., Kay, E. R. & Leigh, D. A. Beyond switches: ratcheting a particle energetically uphill with a compartmentalized molecular machine. J. Am. Chem. Soc. 128, 4058–4073 (2006).

  23. 23.

    von Delius, M., Geertsema, E. M. & Leigh, D. A. A synthetic small molecule that can walk down a track. Nat. Chem. 2, 96–101 (2010).

  24. 24.

    Barrell, J., Campaña, A. G., von Delius, M., Geertsema, E. M. & Leigh, D. A. Light-driven transport of a molecular walker in either direction along a molecular track. Angew. Chem. Int. Ed. 50, 285–290 (2011).

  25. 25.

    Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

  26. 26.

    Cheng, C. et al. An artificial molecular pump. Nat. Nanotech. 10, 547–553 (2015).

  27. 27.

    Ragazzon, G., Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. Nat. Nanotech. 10, 70–75 (2015).

  28. 28.

    Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

  29. 29.

    Thordarson, P., Bijsterveld, E. J. A., Rowan, A. E. & Nolte, R. J. M. Epoxidation of polybutadiene by a topologically linked catalyst. Nature 424, 915–918 (2003).

  30. 30.

    He, Y. & Liu, D. R. Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nat. Nanotech. 5, 778–782 (2010).

  31. 31.

    Wang, J. & Feringa, B. L. Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor. Science 331, 1429–1432 (2011).

  32. 32.

    Lewandowski, B. et al. Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339, 189–193 (2013).

  33. 33.

    Zhao, H. et al. Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks. Nat. Nanotech. 11, 82–88 (2016).

  34. 34.

    Kassem, S. et al. Stereodivergent synthesis with a programmable molecular machine. Nature 549, 374–378 (2017).

  35. 35.

    Göstl, R. & Hecht, S. Controlling covalent connection and disconnection with light. Angew. Chem. Int. Ed. 53, 8784–8787 (2014).

  36. 36.

    Frisch, H., Marschner, D., Goldmann, A. S. & Barner-Kowollik, C. Wavelength-gated dynamic covalent chemistry. Angew. Chem. Int. Ed. 57, 2036–2045 (2018).

  37. 37.

    Cordes, E. H. & Jencks, W. P. On the mechanism of Schiff base formation and hydrolysis. J. Am. Chem. Soc. 84, 832–837 (1962).

  38. 38.

    Sander, E. G. & Jencks, W. P. Equilibria for additions to the carbonyl group. J. Am. Chem. Soc. 90, 6154–6162 (1968).

  39. 39.

    Ciaccia, M., Cacciapaglia, R., Mencarelli, P., Mandolini, L. & Di Stefano, S. Fast transimination in organic solvents in the absence of proton and metal catalysts. A key to imine metathesis catalyzed by primary amines under mild conditions. Chem. Sci. 4, 2253–2261 (2013).

  40. 40.

    Ciaccia, M. & Di Stefano, S. Mechanisms of imine exchange reactions in organic solvents. Org. Biomol. Chem. 13, 646–654 (2015).

  41. 41.

    Kathan, M. et al. Remote-controlling imine exchange kinetics with photoswitches to modulate self-healing in polysiloxane networks by light. Angew. Chem. Int. Ed. 55, 13882–13886 (2016).

  42. 42.

    Xu, Y., Su, T., Huang, Z. & Dong, G. Practical direct α-arylation of cyclopentanones by palladium/enamine cooperative catalysis. Angew. Chem. Int. Ed. 55, 2559–2563 (2016).

  43. 43.

    Eisenreich, F. et al. A photoswitchable catalyst system for remote-controlled (co)polymerization in situ. Nat. Catal. 1, 516–522 (2018).

  44. 44.

    Yamaguchi, T. et al. Photochromic reaction of diarylethenes having phenol moiety as an aryl ring. Bull. Chem. Soc. Jpn. 87, 528–538 (2014).

  45. 45.

    Dean, E. W. & Stark, D. D. A convenient method for the determination of water in petroleum and other organic emulsions. J. Ind. Eng. Chem. 12, 486–490 (1920).

Download references


The authors thank S. Ihrig and J. Schwarz for upscaling the synthesis of phenol I. M.K. and F.E. are indebted to the Studienstiftung des deutschen Volkes and the Fonds der chemischen Industrie, respectively, for providing doctoral fellowships. Generous support by the European Research Council via ERC-2012-STG_308117 (Light4Function) is acknowledged.

Author information

Author notes

  1. These authors contributed equally: Michael Kathan, Fabian Eisenreich.


  1. Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin, Germany

    • Michael Kathan
    • , Fabian Eisenreich
    • , Christoph Jurissek
    • , Andre Dallmann
    • , Johannes Gurke
    •  & Stefan Hecht


  1. Search for Michael Kathan in:

  2. Search for Fabian Eisenreich in:

  3. Search for Christoph Jurissek in:

  4. Search for Andre Dallmann in:

  5. Search for Johannes Gurke in:

  6. Search for Stefan Hecht in:


M.K., F.E., and C.J. carried out synthesis. M.K. and F.E. conducted optical spectroscopy. M.K. performed condensation/hydrolysis experiments. M.K. and A.D. analysed experiments via NMR spectroscopy. J.G. conducted computations. M.K., F.E., and S.H. conceived the idea, designed the study, and wrote the manuscript. All authors discussed the results and edited the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Stefan Hecht.

Supplementary information

  1. Supplementary information

    Synthetic and experimental procedures, computational, spectroscopic and mass spectrometric data, as well as additional experiments

About this article

Publication history




Issue Date