Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hydrolytic stability in hemilabile metal–organic frameworks


Highly porous metal–organic frameworks (MOFs), which have undergone exciting developments over the past few decades, show promise for a wide range of applications. However, many studies indicate that they suffer from significant stability issues, especially with respect to their interactions with water, which severely limits their practical potential. Here we demonstrate how the presence of ‘sacrificial’ bonds in the coordination environment of its metal centres (referred to as hemilability) endows a dehydrated copper-based MOF with good hydrolytic stability. On exposure to water, in contrast to the indiscriminate breaking of coordination bonds that typically results in structure degradation, it is non-structural weak interactions between the MOF’s copper paddlewheel clusters that are broken and the framework recovers its as-synthesized, hydrated structure. This MOF retained its structural integrity even after contact with water for one year, whereas HKUST-1, a compositionally similar material that lacks these sacrificial bonds, loses its crystallinity in less than a day under the same conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of STAM-17-OEt showing the paddlewheel dimer present in the structure.
Fig. 2: Structural change on rehydration of dehydrated STAM-17-OEt.
Fig. 3: Solid-state 13C NMR data for as-made and dehydrated STAM-17-OEt.
Fig. 4: Water stability and ammonia adsorption capacities of STAM-17-OEt and HKUST-1.
Fig. 5: Effect of hydration on paddlewheel units in STAM-17-OEt and HKUST-1.

Similar content being viewed by others


  1. Zhou, H. C., Long, J. R. & Yaghi, O. M. Introduction to metal–organic frameworks. Chem. Rev. 112, 673–674 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Sumida, K. et al. Carbon dioxide capture in metal–organic frameworks. Chem. Rev. 112, 724–781 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D. W. Hydrogen storage in metal–organic frameworks. Chem. Rev. 112, 782–835 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. McKinlay, A. C. et al. BioMOFs: metal–organic frameworks for biological and medical applications. Angew. Chem. 49, 6260–6266 (2010).

    Article  CAS  Google Scholar 

  5. Ferey, G. & Serre, C. Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chem. Soc. Rev. 38, 1380–1399 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Burtch, N. C., Jasuja, H. & Walton, K. S. Water stability and adsorption in metal–organic frameworks. Chem. Rev. 114, 10575–10612 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Cavka, J. H. et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Colombo, V. et al. High thermal and chemical stability in pyrazolate-bridged metal–organic frameworks withexposed metal sites. Chem. Sci. 2, 1311–1319 (2011).

    Article  CAS  Google Scholar 

  9. DeCoste, J. B., Denny, M. S., Peterson, G. W., Mahle, J. J. & Cohen, S. M. Enhanced aging properties of HKUST-1 in hydrophobic mixed-matrix membranes for ammonia adsorption. Chem. Sci. 7, 2711–2716 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. DeCoste, J. B., Peterson, G. W., Smith, M. W., Stone, C. A. & Willis, C. R. Enhanced stability of Cu-BTC MOF via perfluorohexane plasma-enhanced chemical vapor deposition. J. Am. Chem. Soc. 134, 1486–1489 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Wittmann, T. et al. Enhancing the water stability of Al-MIL-101-NH2 via postsynthetic modification. Chem. Eur. J. 21, 314–323 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Chui, S. S. Y., Lo, S. M. F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. A chemically functionalizable nanoporous material Cu3(TMA)2(H2O)3. Science 283, 1148–1150 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Peterson, G. W. et al. Ammonia vapor removal by Cu3(BTC)2 and its characterization by MAS NMR. J. Phys. Chem. C 113, 13906–13917 (2009).

    Article  CAS  Google Scholar 

  14. DeCoste, J. B. & Peterson, G. W. Metal–organic frameworks for air purification of toxic chemicals. Chem. Rev. 114, 5695–5727 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Singh, M. P., Dhumal, N. R., Kim, H. J., Kiefer, J. & Anderson, J. A. Influence of water on the chemistry and structure of the metal organic framework Cu3(btc)2. J. Phys. Chem. C. 120, 17323–17333 (2016).

    Article  CAS  Google Scholar 

  16. Serre, C. et al. Very large breathing effect in the first nanoporous chromium(iii)-based solids: MIL-53 or CrIII(OH)·{O2C–C6H4-CO2}·{HO2C-C6H4-CO2H}x·H2Oy. J. Am. Chem. Soc. 124, 13519–13526 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Xiao, B. et al. Chemically blockable transformation and ultraselective low-pressure gas adsorption in a non-porous metal organic framework. Nat. Chem. 1, 289–294 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Slone, C. S., Weinberger, D. A. & Mirkin, C. A. The transition metal coordination chemistry of hemilabile ligands. Prog. Inorg. Chem. 48, 233–350 (1999).

    CAS  Google Scholar 

  19. Mohideen, M. I. H. et al. Protecting group and switchable pore-discriminating adsorption properties of a hydrophilic–hydrophobic metal–organic framework. Nat. Chem. 3, 304–310 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Sato, H. et al. Self-accelerating CO sorption in a soft nanoporous crystal. Science 343, 167–170 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Dawson, D. M. et al. High-resolution solid-state 13C NMR spectroscopy of the paramagnetic metal–organic frameworks, STAM-1 and HKUST-1. Phys. Chem. Chem. Phys. 15, 919–929 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Clarke, S. J. et al. First principles methods using CASTEP. Z. Krist. 220, 567–570 (2005).

    Google Scholar 

  23. Al-Janabi, N., Alfutimie, A., Siperstein, F. R. & Fan, X. L. Underlying mechanism of the hydrothermal instability of Cu3(BTC)2 metal–organic framework. Front. Chem. Sci. Eng. 10, 103–107 (2016).

    Article  CAS  Google Scholar 

  24. Todaro, M. et al. Decomposition process of carboxylate MOF HKUST-1 unveiled at the atomic scale level. J. Phys. Chem. C 120, 12879–12889 (2016).

    Article  CAS  Google Scholar 

  25. Nijem, N., Fursich, K., Bluhrn, H., Leone, S. R. & Gilles, M. K. Ammonia adsorption and co-adsorption with water in HKUST-1: spectroscopic evidence for cooperative interactions. J. Phys. Chem. C 119, 24781–24788 (2015).

    Article  CAS  Google Scholar 

  26. Mazur, M. et al. Synthesis of ‘unfeasible’ zeolites. Nat. Chem. 8, 58–62 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Morris, R. E. & Cejka, J. Exploiting chemically selective weakness in solids as a route to new porous materials. Nat. Chem. 7, 381–388 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Wu, D. & Navrotsky, A. Thermodynamics of metal–organic frameworks. J. Solid State Chem. 223, 53–58 (2015).

    Article  CAS  Google Scholar 

  29. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 48, 3–10 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 71, 308 (2015).

    Article  CAS  Google Scholar 

  31. Brennan, S. & Cowan, P. L. A suite of programs for calculating X-ray absorption, reflection, and diffraction performance for a variety of materials at arbitrary wavelengths. Rev. Sci. Instrum. 63, 850–853 (1992).

    Article  Google Scholar 

  32. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 45, 849–854 (2012).

    Article  CAS  Google Scholar 

  33. Skibsted, J. & Jakobsen, H. J. Variable-temperature 87Rb magic-angle spinning NMR spectroscopy of inorganic rubidium salts. J. Phys. Chem. A 103, 7958–7971 (1999).

    Article  CAS  Google Scholar 

Download references


R.E.M. thanks the Royal Society and the EPSRC (grants EP/L014475/1 and EP/K025112/1) for funding work in this area, and the Czech Science Foundation for project P106/12/G015 and OP VVV ‘Excellent Research Teams’, project no. CZ.02.1.01/0.0/0.0/15_003/0000417 – CUCAM. S.E.A. thanks the Royal Society/Wolfson Foundation for a merit award, and the European Research Council (EU FP7 Consolidator Grant 614290 ‘EXONMR’) for funding. This research used the resources of the Advanced Light Source, which is a US DOE Office of Science User Facility under contract no. DE-AC02-05CH11231, and the development of the gas cell used in this research was funded through US DOE award no. DE-SC0001015. The authors thank the Diamond Light Source and C. Tang for access to beamline I11, and S. Vornholt for help with electron microscopy and the EPSRC Capital for Great Technologies funding (EP/L017008/1).

Author information

Authors and Affiliations



L.J.M. originally synthesized the material and completed the crystallography with S.A.M. and S.J.T. The adsorption and stability experiments were designed and carried out by L.N.M., P.S.W., M.J.M., C.A.S. and M.W.S. The NMR was completed and analysed by D.M.D., C.E.F.S. and S.E.A, and D.M. carried out the computational work. The paper was written by L.N.M. and R.E.M. and revised by all authors.

Corresponding author

Correspondence to Russell E. Morris.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Synthetic procedures for the synthesis of linker precursors and STAM-17-OEt linker; Powder diffraction; Thermogravimetric analysis; Adsorption experiments; Solid-state NMR; Crystallographic Information

Crystallographic data

CIF for hydrated STAM-17-OEt; CCDC reference: 1566114

Crystallographic data

CIF for dehydrated STAM-17-OEt; CCDC reference: 1566115

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McHugh, L.N., McPherson, M.J., McCormick, L.J. et al. Hydrolytic stability in hemilabile metal–organic frameworks. Nature Chem 10, 1096–1102 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing