Microporous membranes comprising conjugated polymers with rigid backbones enable ultrafast organic-solvent nanofiltration

Article metrics


Conventional technology for the purification of organic solvents requires massive energy consumption, and to reduce such expending calls for efficient filtration membranes capable of high retention of large molecular solutes and high permeance for solvents. Herein, we report a surface-initiated polymerization strategy through C–C coupling reactions for preparing conjugated microporous polymer (CMP) membranes. The backbone of the membranes consists of all-rigid conjugated systems and shows high resistance to organic solvents. We show that 42-nm-thick CMP membranes supported on polyacrylonitrile substrates provide excellent retention of solutes and broad-spectrum nanofiltration in both non-polar hexane and polar methanol, the permeance for which reaches 32 and 22 l m−2 h−1 bar−1, respectively. Both experiments and simulations suggest that the performance of CMP membranes originates from substantially open and interconnected voids formed in the highly rigid networks.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Preparation and characterization of all-conjugated CMP membranes with various dibromobenzene monomers, and investigation of their mechanical properties.
Fig. 2: Nanofiltration performances of p-CMP, m-CMP and o-CMP membranes.
Fig. 3: Structural analysis of amorphous polymer models.


  1. 1.

    Marchetti, P., Jimenez-Solomon, M. F., Szekely, G. & Livingston, A. G. Molecular separation with organic solvent nanofiltration: a critical review. Chem. Rev. 114, 10735–10806 (2014).

  2. 2.

    Cadotte, J. E., Petersen, R. J., Larson, R. E. & Erickson, E. E. A new thin-film composite seawater reverse osmosis membrane. Desalination 32, 25–31 (1980).

  3. 3.

    Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

  4. 4.

    White, L. S., Wang, I. F. & Minhas, B. S. Polyimide membrane for separation of solvents from lube oil. US patent US5 264, 166 (1993).

  5. 5.

    Linder, C., Nemas, M., Perry, M. & Katraro, R. Silicone-derived solvent stable membranes. US patent US5 265, 734 (1993).

  6. 6.

    Dey, K. et al. Selective molecular separation by interfacially crystallized covalent organic framework thin films. J. Am. Chem. Soc. 139, 13083–13091 (2017).

  7. 7.

    Kandambeth, S. et al. Selective molecular sieving in self-standing porous covalent-organic-framework membranes. Adv. Mater. 29, 1603945 (2017).

  8. 8.

    Jimenez-Solomon, M. F., Bhole, Y. & Livingston, A. G. High flux membranes for organic solvent nanofiltration (OSN)—interfacial polymerization with solvent activation. J. Membr. Sci. 423-424, 371–382 (2012).

  9. 9.

    Jimenez-Solomon, M. F., Bhole, Y. & Livingston, A. G. High flux hydrophobic membranes for organic solvent nanofiltration (OSN)—interfacial polymerization, surface modification and solvent activation. J. Membr. Sci. 434, 193–203 (2013).

  10. 10.

    Karan, S., Jiang, Z. & Livingston, A. G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 348, 1347–1351 (2015).

  11. 11.

    Freger, V. Outperforming nature’s membranes. Science 348, 1317–1318 (2015).

  12. 12.

    Guiver, M. D. & Lee, Y. M. Polymer rigidity improves microporous membranes. Science 339, 284–285 (2013).

  13. 13.

    Carta, M. et al. An efficient polymer molecular sieve for membrane gas separations. Science 339, 303–307 (2013).

  14. 14.

    Park, H. B. et al. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 318, 254–258 (2007).

  15. 15.

    Du, N. et al. Polymer nanosieve membranes for CO2-capture applications. Nat. Mater. 10, 372–375 (2011).

  16. 16.

    Bezzu, C. G. et al. A spirobifluorene-based polymer of intrinsic microporosity with improved performance for gas separation. Adv. Mater. 24, 5930–5933 (2012).

  17. 17.

    Moneypenny, T. P. et al. Impact of shape persistence on the porosity of molecular cages. J. Am. Chem. Soc. 139, 3259–3264 (2017).

  18. 18.

    Alsbaiee, A. et al. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature 529, 190–194 (2016).

  19. 19.

    Du, Y. et al. Ionic covalent organic frameworks with spiroborate linkage. Angew. Chem. Int. Ed. 55, 1737–1741 (2016).

  20. 20.

    Gorgojo, P. et al. Ultrathin polymer films with intrinsic microporosity: anomalous solvent permeation and high flux membranes. Adv. Funct. Mater. 24, 4729–4737 (2014).

  21. 21.

    Jimenez-Solomon, M. F., Song, Q., Jelfs, K. E., Munoz-Ibanez, M. & Livingston, A. G. Polymer nanofilms with enhanced microporosity by interfacial polymerization. Nat. Mater. 15, 760–767 (2016).

  22. 22.

    Jiang, J.-X. et al. Conjugated microporous poly(aryleneethynylene) networks. Angew. Chem. Int. Ed. 46, 8574–8578 (2007).

  23. 23.

    Xu, Y., Jin, S., Xu, H., Nagai, A. & Jiang, D. Conjugated microporous polymers: design, synthesis and application. Chem. Soc. Rev. 42, 8012–8031 (2013).

  24. 24.

    Karan, S., Samitsu, S., Peng, X., Kurashima, K. & Ichinose, I. Ultrafast viscous permeation of organic solvents through diamond-like carbon nanosheets. Science 335, 444–447 (2012).

  25. 25.

    Yang, Q. et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nat. Mater. 16, 1198–1202 (2017).

  26. 26.

    Mulder, M. Basic Principles of Membrane Technology (Kluwer Academic Publishers Group, Dondrecht, 1996).

  27. 27.

    Wijmans, J. G. & Baker, R. W. The solution-diffusion model: a review. J. Membr. Sci. 107, 1 (1995).

  28. 28.

    Sorribas, S., Gorgojo, P., Téllez, C., Coronas, J. & Livingston, A. G. High flux thin film nanocomposite membranes based on metal–organic frameworks for organic solvent nanofiltration. J. Am. Chem. Soc. 135, 15201–15208 (2013).

  29. 29.

    Abbott, L. & Colina, C. Polymatic: A Simulated Polymerization Algorithm (nanoHUB, 2013); https://nanohub.org/resources/17278

  30. 30.

    Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

  31. 31.

    Sun, H. Force field for computation of conformational energies, structures, and vibrational frequencies of aromatic polyesters. J. Comput. Chem. 15, 752–768 (1994).

  32. 32.

    Bayly, C. I., Cieplak, P., Cornell, W. & Kollman, P. A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 97, 10269–10280 (1993).

  33. 33.

    Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

Download references


This work was supported by the National Key Basic Research Program of China (2014CB931801 and 2016YFA0200700 to Z.T.), National Natural Science Foundation of China (51472054 to L.L.; 21475029, 91427302 and 21721002 to Z.T.; and 11422215 and 11672079 to X.S.), Frontier Science Key Project of the Chinese Academy of Sciences (QYZDJ-SSW-SLH038 to Z.T.), Instrument Developing Project of the Chinese Academy of Sciences (YZ201311 to Z.T.), CAS-CSIRO Cooperative Research Program (GJHZ1503 to Z.T.) and Strategic Priority Research Program of the Chinese Academy of Sciences (XDA09040100 to Z.T.), K. C. Wong Education Foundation (to Z.T.), and Youth Innovation Promotion Association CAS (to L.L.). We thank H. Sun for discussion on PFQNM.

Author information

B.L., L.L. and Z.T. conceived the project, analysed the data and wrote the paper. H.W. and X.S. contributed to preparation of the manuscript. B.L. prepared the samples and performed the nanofiltration evaluation. X.H., Z.A.G., N.A.K., H.S. and A.M.K. characterized the samples. X.S., H.W. and B.S. performed the density functional theory calculations and simulations. All authors discussed the results and commented on the manuscript.

Correspondence to Lianshan Li or Zhiyong Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary characterization and simulation details, Supplementary Figures 1–31, Supplementary Tables 1–7

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, B., Wang, H., Shi, X. et al. Microporous membranes comprising conjugated polymers with rigid backbones enable ultrafast organic-solvent nanofiltration. Nature Chem 10, 961–967 (2018) doi:10.1038/s41557-018-0093-9

Download citation

Further reading