Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-aqueous homogenous biocatalytic conversion of polysaccharides in ionic liquids using chemically modified glucosidase

Abstract

The increasing requirement to produce platform chemicals and fuels from renewable sources means advances in biocatalysis are rapidly becoming a necessity. Biomass is widely used in nature as a source of energy and as chemical building blocks. However, recalcitrance towards traditional chemical processes and solvents provides a significant barrier to widespread utility. Here, by optimizing enzyme solubility in ionic liquids, we have discovered solvent-induced substrate promiscuity of glucosidase, demonstrating an unprecedented example of homogeneous enzyme bioprocessing of cellulose. Specifically, chemical modification of glucosidase for solubilization in ionic liquids can increase thermal stability to up to 137 °C, allowing for enzymatic activity 30 times greater than is possible in aqueous media. These results establish that through a synergistic combination of chemical biology (enzyme modification) and reaction engineering (solvent choice), the biocatalytic capability of enzymes can be intensified: a key step towards the full-scale deployment of industrial biocatalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of cellulase activity.
Fig. 2: Structure of glucosidase in ionic liquids.
Fig. 3: Stability of glucosidase in ionic liquids.
Fig. 4: Glucosidase in the reaction medium.
Fig. 5: Enzyme activity in pure ionic liquid.

Similar content being viewed by others

References

  1. Ragauskas, A. J. et al. The path forward for biofuels and biomaterials. Science 311, 484–489 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Ragauskas, A. J. et al. Lignin valorization: improving lignin processing in the biorefinery. Science 344, 1246843 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Laskar, D. D. & Yang, B. Pathways for biomass derived lignin to hydrocarbon fuels. Biofuels Bioprod. Biorefin. 7, 602–626 (2013).

    Article  CAS  Google Scholar 

  4. Blanch, H. W., Simmons, B. A. & Klein-Marcuschamer, D. Biomass deconstruction to sugars. Biotechnol. J. 6, 1086–1102 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Himmel, M. E. et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315, 804–807 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Griebenow, K. & Klibanov, A. M. On protein denaturation in aqueous−organic mixtures but not in pure organic solvents. J. Am. Chem. Soc. 118, 11695–11700 (1996).

    Article  CAS  Google Scholar 

  7. Sheldon, R. A. & van Pelt, S. Enzyme immobilisation in biocatalysis: why, what and how. Chem. Soc. Rev. 42, 6223–6235 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Sheldon, R. A. & Pereira, P. C. Biocatalysis engineering: the big picture. Chem. Soc. Rev. 46, 2678–2691 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Smiglak, M. et al. Ionic liquids for energy, materials, and medicine. Chem. Commun. 50, 9228–9250 (2014).

    Article  CAS  Google Scholar 

  10. Hallett, J. P. & Welton, T. Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem. Rev. 111, 3508–3576 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Brandt, A., Gräsvik, J., Hallett, J. P. & Welton, T. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 15, 550–583 (2013).

    Article  CAS  Google Scholar 

  12. Xu, F. et al. Transforming biomass conversion with ionic liquids: process intensification and the development of a high-gravity, one-pot process for the production of cellulosic ethanol. Energy Environ. Sci. 9, 1042–1049 (2016).

    Article  CAS  Google Scholar 

  13. Sheldon, R. A. Biocatalysis and biomass conversion in alternative reaction media. Chem. Eur. J. 22, 12984–12999 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Brogan, A. P. S. & Hallett, J. P. Solubilizing and stabilizing proteins in anhydrous ionic liquids through formation of protein–polymer surfactant nanoconstructs. J. Am. Chem. Soc. 138, 4494–4501 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. George, A. et al. Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chem. 17, 1728–1734 (2015).

    Article  CAS  Google Scholar 

  16. Sørensen, A., Lübeck, M., Lübeck, P. S. & Ahring, B. K. Fungal beta-glucosidases: a bottleneck in industrial use of lignocellulosic materials. Biomolecules 3, 612–631 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Park, J. I. et al. A thermophilic ionic liquid-tolerant cellulase cocktail for the production of cellulosic biofuels. PLoS One 7, e37010 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brogan, A. P. S., Siligardi, G., Hussain, R., Perriman, A. W. & Mann, S. Hyper-thermal stability and unprecedented re-folding of solvent-free liquid myoglobin. Chem. Sci. 3, 1839–1846 (2012).

    Article  CAS  Google Scholar 

  19. Ab Rani, M. A. et al. Understanding the polarity of ionic liquids. Phys. Chem. Chem. Phys. 13, 16831–16840 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Zaks, A. & Klibanov, A. M. Enzymatic catalysis in organic media at 100 °C. Science 224, 1249 (1984).

    Article  CAS  PubMed  Google Scholar 

  21. Klibanov, A. M. Improving enzymes by using them in organic solvents. Nature 409, 241–246 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Clark, D. S. Characteristics of nearly dry enzymes in organic solvents: implications for biocatalysis in the absence of water. Philos. Trans. R. Soc. B 359, 1299–1307 (2004).

    Article  CAS  Google Scholar 

  23. Brogan, A. P. S., Sharma, K. P., Perriman, A. W. & Mann, S. Enzyme activity in liquid lipase melts as a step towards solvent-free biology at 150 °C. Nat. Commun. 5, 5058 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Brogan, A. P. S., Sessions, R. B., Perriman, A. W. & Mann, S. Molecular dynamics simulations reveal a dielectric-responsive coronal structure in protein–polymer surfactant hybrid nanoconstructs. J. Am. Chem. Soc. 136, 16824–16831 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Gallat, F.-X. et al. A polymer surfactant corona dynamically replaces water in solvent-free protein liquids and ensures macromolecular flexibility and activity. J. Am. Chem. Soc. 132, 13168–13171 (2012).

    Article  CAS  Google Scholar 

  26. Perriman, A. W. et al. Reversible dioxygen binding in solvent-free liquid myoglobin. Nat. Chem. 2, 622–626 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Jurick, W. M. II, Vico, I., Whitaker, B. D., Gaskins, V. L. & Janisiewicz, W. J. Application of the 2-cyanoacetamide method for spectrophotomeric assay of cellulase enzyme activity. Plant Pathol. J. 11, 38–41 (2012).

    Article  CAS  Google Scholar 

  28. Lees, J. G., Miles, A. J., Wien, F. & Wallace, B. A. A reference database for circular dichroism spectroscopy covering fold and secondary structure space. Bioinformatics 22, 1955–1962 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Whitmore, L. & Wallace, B. A. Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89, 392–400 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Whitmore, L. & Wallace, B. A. DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res. 32, W668–W673 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the EPSRC (Frontier Engineering Grant EP/K038648/1) for financial support. The authors also thank G. Siligardi, R. Hussain and T. Jaforvi at the Diamond Light Source for access to the B23 beamline, N. Terrill and A. Smith at the Diamond Light Source for access and support at the I22 beamline, W.-C. Tu for running HPLC samples and P. Carry for access to FTIR and dynamic light scattering.

Author information

Authors and Affiliations

Authors

Contributions

A.P.S.B. designed and performed the experiments, A.P.S.B. and J.P.H. wrote the manuscript, and L.B.-L. synthesized and characterized the ionic liquids. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Jason P. Hallett.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods and experimental data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brogan, A.P.S., Bui-Le, L. & Hallett, J.P. Non-aqueous homogenous biocatalytic conversion of polysaccharides in ionic liquids using chemically modified glucosidase. Nature Chem 10, 859–865 (2018). https://doi.org/10.1038/s41557-018-0088-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0088-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing