Article | Published:

Design of catalysts for site-selective and enantioselective functionalization of non-activated primary C–H bonds

Nature Chemistryvolume 10pages10481055 (2018) | Download Citation


C–H functionalization represents a promising approach for the synthesis of complex molecules. Instead of relying on modifying the functional groups present in a molecule, the synthetic sequence is achieved by carrying out selective reactions on the C–H bonds, which traditionally would have been considered to be the unreactive components of a molecule. A major challenge is to design catalysts to control both the site- and stereoselectivity of the C–H functionalization. We have been developing dirhodium catalysts with different selectivity profiles in C–H functionalization reactions with donor/acceptor carbenes as reactive intermediates. Here we describe a new dirhodium catalyst capable of the functionalization of non-activated primary C–H bonds with high levels of site selectivity and enantioselectivity.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Godula, K. & Sames, D. C–H bond functionalization in complex organic synthesis. Science 312, 67–72 (2006).

  2. 2.

    Gutekunst, W. R. & Baran, P. S. C–H functionalization logic in total synthesis. Chem. Soc. Rev. 40, 1976–1991 (2011).

  3. 3.

    Wencel-Delord, J. & Glorius, F. C–H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat. Chem. 5, 369–375 (2013).

  4. 4.

    Fier, P. S. & Hartwig, J. F. Synthesis and late-stage functionalization of complex molecules through C–H fluorination and nucleophilic aromatic substitution. J. Am. Chem. Soc. 136, 10139–10147 (2014).

  5. 5.

    Noisier, A. F. & Brimble, M. A. C–H functionalization in the synthesis of amino acids and peptides. Chem. Rev. 114, 8775–8806 (2014).

  6. 6.

    Romero, N. A., Margrey, K. A., Tay, N. E. & Nicewicz, D. A. Site-selective arene C–H amination via photoredox catalysis. Science 349, 1326–1330 (2015).

  7. 7.

    Cuthbertson, J. D. & MacMillan, D. W. The direct arylation of allylic sp 3 C–H bonds via organic and photoredox catalysis. Nature 519, 74–77 (2015).

  8. 8.

    Jin, J. & MacMillan, D. W. Alcohols as alkylating agents in heteroarene C–H functionalization. Nature 525, 87–90 (2015).

  9. 9.

    Davies, H. M. L. & Hansen, T. Asymmetric intermolecular carbenoid C−H insertions catalyzed by rhodium(ii) (S)-N-(p-dodecylphenyl)sulfonylprolinate. J. Am. Chem. Soc. 119, 9075–9076 (1997).

  10. 10.

    Davies, H. M. L., Antoulinakis, E. G. & Hansen, T. Catalytic asymmetric synthesis of syn-aldol products from intermolecular C−H insertions between allyl silyl ethers and methyl aryldiazoacetates. Org. Lett. 1, 383–386 (1999).

  11. 11.

    Davies, H. M. L. & Antoulinakis, E. G. Asymmetric catalytic C−H activation applied to the synthesis of syn-aldol products. Org. Lett. 2, 4153–4156 (2000).

  12. 12.

    Chan, K. H., Guan, X., Lo, V. K. & Che, C. M. Elevated catalytic activity of ruthenium(ii)-porphyrin-catalyzed carbene/nitrene transfer and insertion reactions with N-heterocyclic carbene ligands. Angew. Chem. Int. Ed. 53, 2982–2987 (2014).

  13. 13.

    Li, Y., Huang, J. S., Zhou, Z. Y., Che, C. M. & You, X. Z. Remarkably stable iron porphyrins bearing nonheteroatom-stabilized carbene or (alkoxycarbonyl)carbenes: isolation, X-ray crystal structures, and carbon atom transfer reactions with hydrocarbons. J. Am. Chem. Soc. 124, 13185–13193 (2002).

  14. 14.

    Suematsu, H. & Katsuki, T. Iridium(iii) catalyzed diastereo- and enantioselective C−H bond functionalization. J. Am. Chem. Soc. 131, 14218–14219 (2009).

  15. 15.

    Axten, J. M., Ivy, R., Krim, L. & Winkler, J. D. Enantioselective synthesis of d-threo-methylphenidate. J. Am. Chem. Soc. 121, 6511–6512 (1999).

  16. 16.

    Davies, H. M. L., Hansen, T., Hopper, D. W. & Panaro, S. A. Highly regio-, diastereo-, and enantioselective C−H insertions of methyl aryldiazoacetates into cyclic N-Boc-protected amines. Asymmetric synthesis of novel C2-symmetric amines and threo-methylphenidate. J. Am. Chem. Soc. 121, 6509–6510 (1999).

  17. 17.

    Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010).

  18. 18.

    Simmons, E. M. & Hartwig, J. F. Catalytic functionalization of unactivated primary C–H bonds directed by an alcohol. Nature 483, 70–73 (2012).

  19. 19.

    Liu, Y. J. et al. Overcoming the limitations of directed C–H functionalizations of heterocycles. Nature 515, 389–393 (2014).

  20. 20.

    Dick, A. R., Hull, K. L. & Sanford, M. S. A highly selective catalytic method for the oxidative functionalization of C−H bonds. J. Am. Chem. Soc. 126, 2300–2301 (2004).

  21. 21.

    Desai, L. V., Malik, H. A. & Sanford, M. S. Oxone as an inexpensive, safe, and environmentally benign oxidant for C−H bond oxygenation. Org. Lett. 8, 1141–1144 (2006).

  22. 22.

    Kalyani, D. & Sanford, M. S. Regioselectivity in palladium-catalyzed C−H activation/oxygenation reactions. Org. Lett. 7, 4149–4152 (2005).

  23. 23.

    Hwang, S. J., Cho, S. H. & Chang, S. Synthesis of condensed pyrroloindoles via Pd-catalyzed intramolecular C–H bond functionalization of pyrroles. J. Am. Chem. Soc. 130, 16158–16159 (2008).

  24. 24.

    McQuaid, K. M. & Sames, D. C–H bond functionalization via hydride transfer: Lewis acid catalyzed alkylation reactions by direct intramolecular coupling of sp 3 C–H bonds and reactive alkenyl oxocarbenium intermediates. J. Am. Chem. Soc. 131, 402–403 (2009).

  25. 25.

    He, G., Zhao, Y., Zhang, S., Lu, C. & Chen, G. Highly efficient syntheses of azetidines, pyrrolidines, and indolines via palladium catalyzed intramolecular amination of C(sp 3)−H and C(sp 2)−H bonds at gamma and delta positions. J. Am. Chem. Soc. 134, 3–6 (2012).

  26. 26.

    Doyle, M. P., Duffy, R., Ratnikov, M. & Zhou, L. Catalytic carbene insertion into C−H bonds. Chem. Rev. 110, 704–724 (2010).

  27. 27.

    Doyle, M. P., Kalinin, A. V. & Ene, D. G. Chiral catalyst controlled diastereoselection and regioselection in intramolecular carbon−hydrogen insertion reactions of diazoacetates. J. Am. Chem. Soc. 118, 8837–8846 (1996).

  28. 28.

    Taber, D. F. & Stiriba, S. E. Synthesis of natural products by rhodium-mediated intramolecular C−H insertion. Chem. Eur. J. 4, 990–992 (1998).

  29. 29.

    Breslow, R. & Gellman, S. H. Intramolecular nitrene carbon–hydrogen insertions mediated by transition-metal complexes as nitrogen analogs of cytochrome P-450 reactions. J. Am. Chem. Soc. 105, 6728–6729 (1983).

  30. 30.

    Espino, C. G., Wehn, P. M., Chow, J. & Du Bois, J. Synthesis of 1,3-difunctionalized amine derivatives through selective C−H bond oxidation. J. Am. Chem. Soc. 123, 6935–6936 (2001).

  31. 31.

    Sigman, M. S. & Werner, E. W. Imparting catalyst control upon classical palladium-catalyzed alkenyl C−H bond functionalization reactions. Acc. Chem. Res. 45, 874–884 (2012).

  32. 32.

    Hickman, A. J. & Sanford, M. S. Catalyst control of site selectivity in the Pdii/iv-catalyzed direct arylation of naphthalene. ACS Catal. 1, 170–174 (2011).

  33. 33.

    Hartwig, J. F. Catalyst-controlled site-selective bond activation. Acc. Chem. Res. 50, 549–555 (2017).

  34. 34.

    Dydio, P. et al. An artificial metalloenzyme with the kinetics of native enzymes. Science 354, 102–106 (2016).

  35. 35.

    Thu, H. Y., Yu, W. Y. & Che, C. M. Intermolecular amidation of unactivated sp 2 and sp 3 C–H bonds via palladium-catalyzed cascade C–H activation/nitrene insertion. J. Am. Chem. Soc. 128, 9048–9049 (2006).

  36. 36.

    Espino, C. G., Fiori, K. W., Kim, M. & Du Bois, J. Expanding the scope of C–H amination through catalyst design. J. Am. Chem. Soc. 126, 15378–15379 (2004).

  37. 37.

    Bois, J. D. Rhodium-catalyzed C–H amination—an enabling method for chemical synthesis. Org. Process Res. Dev. 15, 758–762 (2011).

  38. 38.

    Huang, X., Bergsten, T. M. & Groves, J. T. Manganese-catalyzed late-stage aliphatic C–H azidation. J. Am. Chem. Soc. 137, 5300–5303 (2015).

  39. 39.

    Sharma, A. & Hartwig, J. F. Metal-catalysed azidation of tertiary C–H bonds suitable for late-stage functionalization. Nature 517, 600–604 (2015).

  40. 40.

    Chen, H., Schlecht, S., Semple, T. C. & Hartwig, J. F. Thermal, catalytic, regiospecific functionalization of alkanes. Science 287, 1995–1997 (2000).

  41. 41.

    Schmidt, V. A., Quinn, R. K., Brusoe, A. T. & Alexanian, E. J. Site-selective aliphatic C–H bromination using N-bromoamides and visible light. J. Am. Chem. Soc. 136, 14389–14392 (2014).

  42. 42.

    Davies, H. M. & Manning, J. R. Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion. Nature 451, 417–424 (2008).

  43. 43.

    Davies, H. M. & Morton, D. Guiding principles for site selective and stereoselective intermolecular C–H functionalization by donor/acceptor rhodium carbenes. Chem. Soc. Rev. 40, 1857–1869 (2011).

  44. 44.

    Liao, K., Negretti, S., Musaev, D. G., Bacsa, J. & Davies, H. M. L. Site-selective and stereoselective functionalization of unactivated C–H bonds. Nature 533, 7602–7606 (2016).

  45. 45.

    Liao, K. et al. Site-selective and stereoselective functionalization of non-activated tertiary C–H bonds. Nature 551, 609–613 (2017).

  46. 46.

    Thu, H. Y. et al. Highly selective metal catalysts for intermolecular carbenoid insertion into primary C–H bonds and enantioselective C−C bond formation. Angew. Chem. Int. Ed. 47, 9747–9751 (2008).

  47. 47.

    Davies, H. M. L. & Venkataramani, C. Kinetic resolution and double stereodifferentiation in catalytic asymmetric C−H activation of 2-substituted pyrrolidines. Org. Lett. 3, 1773–1775 (2001).

  48. 48.

    Liao, K. et al. Site-selective carbene-induced C–H functionalization catalyzed by dirhodium tetrakis(triarylcyclopropanecarboxylate) complexes. ACS Catal. 8, 678–682 (2018).

  49. 49.

    Hansen, J. H., Autsbach, J. & Davies, H. M. L. Computational study on the selectivity of donor/acceptor-substituted rhodium carbenoids. J. Org. Chem. 74, 6555–6563 (2009).

Download references


Financial support was provided by the National Science Foundation (NSF) via the CCI Center for Selective C–H Functionalization (CHE-1700982). D.G.M. acknowledges NSF MRI-R2 grant CHE-0958205 and the use of the resources of the Cherry Emerson Center for Scientific Computation. Funds to purchase the NMR and X-ray spectrometers used in these studies were supported by the NSF (CHE 1531620 and CHE 1626172). The authors thank J. Bacsa for the X-ray structure determinations.

Author information


  1. Department of Chemistry, Emory University, Atlanta, GA, USA

    • Kuangbiao Liao
    • , Djamaladdin G. Musaev
    •  & Huw M. L. Davies
  2. Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA

    • Yun-Fang Yang
    • , Yingzi Li
    • , Jacob N. Sanders
    •  & K. N. Houk
  3. College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China

    • Yun-Fang Yang
  4. Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, GA, USA

    • Djamaladdin G. Musaev


  1. Search for Kuangbiao Liao in:

  2. Search for Yun-Fang Yang in:

  3. Search for Yingzi Li in:

  4. Search for Jacob N. Sanders in:

  5. Search for K. N. Houk in:

  6. Search for Djamaladdin G. Musaev in:

  7. Search for Huw M. L. Davies in:


K.L. and H.M.L.D. designed the synthetic experiments, K.L. performed the synthetic experiments, Y.-F.Y., Y.L., J.S., D.G.M. and K.N.H. conducted the computational studies, and K.L., K.N.H and H.M.L.D. prepared the manuscript.

Competing interests

H.M.L.D. is a named inventor on a patent entitled ‘Dirhodium catalyst compositions and synthetic processes related thereto’ (US 8,974,428, issued March 10, 2015). The other authors declare no competing interests.

Corresponding author

Correspondence to Huw M. L. Davies.

Supplementary information

  1. Supplementary information

    Supplementary experimental and computational details

  2. Crystallographic data

    CIF for compound 11; CCDC reference: 1551026

  3. Crystallographic data

    Structure factors for compound 11; CCDC reference 1551026

  4. Crystallographic data

    CIF for catalyst F; CCDC reference: 1552206

  5. Crystallographic data

    Structure factors for catalyst F; CCDC reference 1552206

  6. Computational data

    Calculated C2 symmetric structure for catalyst I

  7. Computational data

    Calculated C4 symmetric structure for catalyst I

  8. Computational data

    Calculated C4a symmetric structure for catalyst I

  9. Computational data

    Calculated D2 symmetric structure for catalyst I

  10. Computational data

    Calculated C2 symmetric carbene structure

  11. Computational data

    Calculated C4 symmetric carbene structure for catalyst

  12. Computational data

    Calculated transition state TS1

  13. Computational data

    Calculated transition state TS2

  14. Computational data

    Calculated transition state TS3

About this article

Publication history