Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure–performance descriptors and the role of Lewis acidity in the methanol-to-propylene process

A Publisher Correction to this article was published on 10 July 2018

This article has been updated

Abstract

The combination of well-defined acid sites, shape-selective properties and outstanding stability places zeolites among the most practically relevant heterogeneous catalysts. The development of structure–performance descriptors for processes that they catalyse has been a matter of intense debate, both in industry and academia, and the direct conversion of methanol to olefins is a prototypical system in which various catalytic functions contribute to the overall performance. Propylene selectivity and resistance to coking are the two most important parameters in developing new methanol-to-olefin catalysts. Here, we present a systematic investigation on the effect of acidity on the performance of the zeolite ‘ZSM-5’ for the production of propylene. Our results demonstrate that the isolation of Brønsted acid sites is key to the selective formation of propylene. Also, the introduction of Lewis acid sites prevents the formation of coke, hence drastically increasing catalyst lifetime.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustrations of the HP concept for the MTO reaction and the synthesis of pre- and post-synthetically modified zeolites.
Fig. 2: Evaluation of Brønsted and Lewis acid site interactions.
Fig. 3: Catalytic behaviour of pre- and post-synthetically modified catalysts.
Fig. 4: Modified zeolites decrease the stability and growth rate of aromatic MTO intermediates.
Fig. 5: DFT-based enthalpy calculations at 500 °C reveal the most stable structure of binuclear Ca species in ZSM-5.
Fig. 6: Visualization of the trapped hydrocarbon species in Z- and AE-series.

Similar content being viewed by others

Change history

  • 10 July 2018

    In the version of this Article originally published, on the right side of Fig. 4b, the ‘Aromatic cycle’ label was erroneously shifted outside of the central circular arrow into a position on part of the reaction cycle. This has been corrected in the online versions of the Article.

References

  1. Bleken, F. L. et al. Conversion of methanol into light olefins over ZSM-5 zeolite: strategy to enhance propene selectivity. Appl. Catal. A 447, 178–185 (2012).

    Article  CAS  Google Scholar 

  2. Keil, F. J. Methanol-to-hydrocarbons: process technology. Microporous Mesoporous Mater. 29, 49–66 (1999).

    Article  CAS  Google Scholar 

  3. Sun, X. Y. et al. On reaction pathways in the conversion of methanol to hydrocarbons on HZSM-5. J. Catal. 317, 185–197 (2014).

    Article  CAS  Google Scholar 

  4. Teketel, S. et al. Morphology-induced shape selectivity in zeolite catalysis. J. Catal. 327, 22–32 (2015).

    Article  CAS  Google Scholar 

  5. Olsbye, U. et al. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew. Chem. Int. Ed. 51, 5810–5831 (2012).

    Article  CAS  Google Scholar 

  6. Milina, M., Mitchell, S., Crivelli, P., Cooke, D., & Perez-Ramirez, J. Mesopore quality determines the lifetime of hierarchically structured zeolite catalysts. Nat. Commun. 5, 3922 (2014).

    Article  Google Scholar 

  7. Liang, T. et al. Conversion of methanol to olefins over H-ZSM-5 zeolite: reaction pathway is related to the framework aluminum siting. ACS Catal. 6, 7311–7325 (2016).

    Article  CAS  Google Scholar 

  8. Yarulina, I. et al. Methanol-to-olefins process over zeolite catalysts with DDR topology: effect of composition and structural defects on catalytic performance. Catal. Sci. Technol. 6, 2663–2678 (2016).

    Article  CAS  Google Scholar 

  9. Deimund, M. A. et al. Effect of heteroatom concentration in SSZ-13 on the methanol-to-olefins reaction. ACS Catal. 6, 542–550 (2016).

    Article  CAS  Google Scholar 

  10. Hemelsoet, K., Van der Mynsbrugge, J., De Wispelaere, K., Waroquier, M. & Van Speybroeck, V. Unraveling the reaction mechanisms governing methanol-to-olefins catalysis by theory and experiment. ChemPhysChem 14, 1526–1545 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Svelle, S. et al. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: ethene formation is mechanistically separated from the formation of higher alkenes. J. Am. Chem. Soc. 128, 14770–14771 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Haw, J. F., Song, W. G., Marcus, D. M. & Nicholas, J. B. The mechanism of methanol to hydrocarbon catalysis. Acc. Chem. Res. 36, 317–326 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Stöcker, M. Methanol-to-hydrocarbons: catalytic materials and their behavior. Microporous Mesoporous Mater. 29, 3–48 (1999).

    Article  Google Scholar 

  14. Janardhan, H. L., Shanbhag, G. V. & Halgeri, A. B. Shape-selective catalysis by phosphate modified ZSM-5: Generation of new acid sites with pore narrowing. Appl. Catal. A 471, 12–18 (2014).

    Article  CAS  Google Scholar 

  15. Llewellyn, P. L. et al. Adsorption by MFI-type zeolites examined by isothermal microcalorimetry and neutron-diffraction. 2. Nitrogen and carbon-monooxide. Langmuir 9, 1852–1856 (1993).

    Article  CAS  Google Scholar 

  16. Choi, M. et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461, 246–249 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Cychosz, K. A., Guillet-Nicolas, R., Garcia-Martinez, J. & Thommes, M. Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chem. Soc. Rev. 46, 389–414 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Emeis, C. A. Determination of integrated molar extinction coefficients for infrared-absorption bands of pyridine adsorbed on solid acid catalysts. J. Catal. 141, 347–354 (1993).

    Article  CAS  Google Scholar 

  19. Brus, J. et al. Structure of framework aluminum Lewis sites and perturbed aluminum atoms in zeolites as determined by Al-27{H-1} REDOR (3Q) MAS NMR spectroscopy and DFT/Molecular mechanics. Angew. Chem. Int. Ed. 54, 541–545 (2015).

    CAS  Google Scholar 

  20. Mei, C. S. et al. Selective production of propylene from methanol: mesoporosity development in high silica HZSM-5. J. Catal. 258, 243–249 (2008).

    Article  CAS  Google Scholar 

  21. Milina, M., Mitchell, S., Michels, N. L., Kenvin, J. & Perez-Ramirez, J. Interdependence between porosity, acidity, and catalytic performance in hierarchical ZSM-5 zeolites prepared by post-synthetic modification. J. Catal. 308, 398–407 (2013).

    Article  CAS  Google Scholar 

  22. Volkringer, C. et al. The Kagome topology of the gallium and indium metal-organic framework types with a MIL-68 tructure: synthesis, XRD, solid-state NMR characterizations, and hydrogen adsorption. Inorg. Chem. 47, 11892–11901 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Ruspic, C. et al. A well-defined hydrocarbon-soluble calcium hydroxide: synthesis, structure, and reactivity. J. Am. Chem. Soc. 128, 15000–15004 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Mores, D., Kornatowski, J., Olsbye, U. & Weckhuysen, B. M. Coke formation during the methanol-to-olefin conversion: in situ microspectroscopy on individual H-ZSM-5 crystals with different Bronsted acidity. Chem. Eur. J. 17, 2874–2884 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Martínez-Espín, J. S. et al. Hydrogen transfer versus methylation: on the genesis of aromatics formation in the methanol-to-hydrocarbons reaction over H-ZSM-5. ACS Catal. 7, 5773–5780 (2017).

    Article  CAS  Google Scholar 

  26. Müller, S. et al. Hydrogen transfer pathways during zeolite catalyzed methanol conversion to hydrocarbons. J. Am. Chem. Soc. 138, 15994–16003 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Guisnet, M., Costa, L. & Ribeiro, F. R. Prevention of zeolite deactivation by coking. J. Mol. Catal. A Chem. 305, 69–83 (2009).

    Article  CAS  Google Scholar 

  28. Mitchell, S. et al. Structural analysis of hierarchically organized zeolites. Nat. Commun. 6, 8633 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schmidt, F. et al. Coke location in microporous and hierarchical ZSM-5 and the impact on the MTH reaction. J. Catal. 307, 238–245 (2013).

    Article  CAS  Google Scholar 

  30. Bleken, F. L. et al. Catalyst deactivation by coke formation in microporous and desilicated zeolite H-ZSM-5 during the conversion of methanol to hydrocarbons. J. Catal. 307, 62–73 (2013).

    Article  CAS  Google Scholar 

  31. Kortunov, P. et al. The role of mesopores in intracrystalline transport in USY zeolite: PFG NMR diffusion study on various length scales. J. Am. Chem. Soc. 127, 13055–13059 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Karger, J. & Valiullin, R. Mass transfer in mesoporous materials: the benefit of microscopic diffusion measurement. Chem. Soc. Rev. 42, 4172–4197 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Karger, J. Transport phenomena in nanoporous materials. ChemPhysChem 16, 24–51 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Yarulina, I. et al. Suppression of the aromatic cycle in methanol-to-olefins reaction over ZSM-5 by post-synthetic modification using calcium. ChemCatChem 8, 3057–3063 (2016).

    Article  CAS  Google Scholar 

  35. Pidko, E. A., Hensen, E. J. M. & van Santen, R. A. Self-organization of extraframework cations in zeolites. Proc. R. Soc. A 468, 2070–2086 (2012).

    Article  CAS  Google Scholar 

  36. De Wispelaere, K., Bailleul, S. & Van Speybroeck, V. Towards molecular control of elementary reactions in zeolite catalysis by advanced molecular simulations mimicking operating conditions. Catal. Sci. Technol. 6, 2686–2705 (2016).

    Article  CAS  Google Scholar 

  37. Van Speybroeck, V. et al. First principle kinetic studies of zeolite-catalyzed methylation reactions. J. Am. Chem. Soc. 133, 888–899 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Van Speybroeck, V. et al. Advances in theory and their application within the field of zeolite chemistry. Chem. Soc. Rev. 44, 7044–7111 (2015).

    Article  PubMed  Google Scholar 

  39. Nicholas, J. B. & Haw, J. F. The prediction of persistent carbenium ions in zeolites. J. Am. Chem. Soc. 120, 11804–11805 (1998).

    Article  CAS  Google Scholar 

  40. Fang, H. et al. Theoretical investigation of the effects of the zeolite framework on the stability of carbenium ions. J. Phys. Chem. C. 115, 7429–7439 (2011).

    Article  CAS  Google Scholar 

  41. Goetze, J. et al. Insights into the activity and deactivation of the methanol-to-olefins process over different small-pore zeolites as studied with operando UV–vis spectroscopy. ACS Catal. 7, 4033–4046 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hemelsoet, K. et al. Identification of intermediates in zeolite-catalyzed reactions by in situ UV/Vis microspectroscopy and a complementary set of molecular simulations. Chem. Eur. J. 19, 16595–16606 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Goetze, J., Yarulina, I., Gascon, J., Kapteijn, F. & Weckhuysen, B. M. Revealing lattice expansion of small-pore zeolite catalysts during the methanol-to-olefins process using combined operando X-ray diffraction and UV–vis spectroscopy. ACS Catal. 8, 2060–2070 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wulfers, M. J. & Jentoft, F. C. The role of cyclopentadienium ions in methanol-to-hydrocarbons chemistry. ACS Catal. 4, 3521–3532 (2014).

    Article  CAS  Google Scholar 

  45. Behera, B., Ray, S. S. & Singh, I. D. NMR Studies of FCC feeds, catalysts and coke. Fluid Catal. Crack. VII Mater. Methods Process Innov. 166, 163–200 (2007).

    CAS  Google Scholar 

  46. Hong, Y. et al. Platinum nanoparticles supported on Ca(Mg)-zeolites for efficient room-temperature alcohol oxidation under aqueous conditions. Chem. Commun. 50, 9679–9682 (2014).

    Article  CAS  Google Scholar 

  47. Na, K. et al. Pillared MFI zeolite nanosheets of a single-unit-cell thickness. J. Am. Chem. Soc. 132, 4169–4177 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Dedecek, J., Balgová, V., Pashkova, V., Klein, P. & Wichterlová, B. Synthesis of ZSM-5 zeolites with defined distribution of Al atoms in the framework and multinuclear MAS NMR analysis of the control of Al distribution. Chem. Mater. 24, 3231–3239 (2012).

    Article  CAS  Google Scholar 

  49. Kresse, G. & Hafner, J. Ab initio. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  50. Kresse, G. & Hafner, J. Ab initio. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  51. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  52. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  53. Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. CP2K: atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 15–25 (2014).

    Article  CAS  Google Scholar 

  54. VandeVondele, J. et al. Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research received funding from the Netherlands Organization for Scientific Research (NWO) in the framework of the TASC Technology Area ‘Syngas, a Switch to Flexible New Feedstock for the Chemical Industry (TA-Syngas). S.B., K.D.W. and V.V.S. acknowledge the Fund for Scientific Research: Flanders (FWO), the Belgian American Educational Foundation, the Research Board of Ghent University (BOF), BELSPO in the frame of IAP/7/05 and funding from the European Union’s Horizon 2020 research and innovation programme (consolidator ERC grant agreement no. 647755—DYNPOR (2015–2020)). The computational resources and services used were provided by Ghent University (Stevin Supercomputer Infrastructure) and the VSC (Flemish Supercomputer Center), funded by the Research Foundation: Flanders (FWO).

Author information

Authors and Affiliations

Authors

Contributions

I.Y. and J.Ga. conceived, coordinated the research and designed the experiments in close collaboration with V.V.S. I.Y. synthesized and characterized most catalysts and performed all catalytic tests with support from M.R. and I.V.S.M. and J.P.R. provided several demetallated zeolite catalysts and J.S.M.E. and M.M. provided the ZSM-5 nanosheets and performed the methylation reactions. S.B., K.D.W. and V.V.S. performed the DFT and ab initio MD calculations. B.M. and E.A.H. performed NMR characterization and J.Go. performed the in situ UV–vis analysis. All authors contributed to analysis and discussion of the data. The manuscript was primarily written by I.Y., K.D.W., V.V.S. and J.Ga. with input from all authors.

Corresponding author

Correspondence to Jorge Gascon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Experimental Data, including detailed catalyst preparation and co-feeding experiments, Supplementary Computational Details, Supplementary Figures 1–41, Supplementary Tables 1–9

Supplementary Data 1

Calculated XYZ coordinates. Calculated XYZ coordinates of all considered structures including structural analysis, protonation energy and propene methylation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarulina, I., De Wispelaere, K., Bailleul, S. et al. Structure–performance descriptors and the role of Lewis acidity in the methanol-to-propylene process. Nature Chem 10, 804–812 (2018). https://doi.org/10.1038/s41557-018-0081-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0081-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing