Article | Published:

Diels–Alder cycloadditions of strained azacyclic allenes

Nature Chemistryvolume 10pages953960 (2018) | Download Citation

Abstract

For over a century, the structures and reactivities of strained organic compounds have captivated the chemical community. Whereas triple-bond-containing strained intermediates have been well studied, cyclic allenes have received far less attention. Additionally, studies of cyclic allenes that bear heteroatoms in the ring are scarce. We report an experimental and computational study of azacyclic allenes, which features syntheses of stable allene precursors, the mild generation and Diels–Alder trapping of the desired cyclic allenes, and explanations of the observed regio- and diastereoselectivities. Furthermore, we show that stereochemical information can be transferred from an enantioenriched silyl triflate starting material to a Diels–Alder cycloadduct by way of a stereochemically defined azacyclic allene intermediate. These studies demonstrate that heteroatom-containing cyclic allenes, despite previously being overlooked as valuable synthetic intermediates, may be harnessed for the construction of complex molecular scaffolds bearing multiple stereogenic centres.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims inpublished maps and institutional affiliations.

References

  1. 1.

    Heaney, H. The benzyne and related intermediates. Chem. Rev. 62, 81–97 (1962).

  2. 2.

    Tadross, P. M. & Stoltz, B. M. A comprehensive history of arynes in natural product total synthesis. Chem. Rev. 112, 3550–3577 (2012).

  3. 3.

    Dubrovskiy, A. V., Markina, N. A. & Larock, R. C. Use of benzynes for the synthesis of heterocycles. Org. Biomol. Chem. 11, 191–218 (2013).

  4. 4.

    Goetz, A. E., Shah, T. K. & Garg, N. K. Pyridynes and indolynes as building blocks for functionalized heterocycles and natural products. Chem. Commun. 51, 34–45 (2015).

  5. 5.

    Wittig, G. & Fritze, P. On the intermediate occurrence of 1,2-cyclohexadiene. Angew. Chem. Int Ed. 5, 846 (1966).

  6. 6.

    Angus, R. O., Schmidt, M. W. & Johnson, R. P. Small-ring cyclic cumulenes: theoretical studies of the structure and barrier to inversion in cyclic allenes. J. Am. Chem. Soc. 107, 532–537 (1985).

  7. 7.

    Engels, B., Schöneboom, J. C., Münster, A. F., Groetsch, S. & Christl, M. Computational assessment of electronic structures of cyclohexa-1,2,4-triene, 1-oxacyclohexa-2,3,5-triene (3δ2-pyran), their benzo derivatives, and cyclohexa-1,2-diene. An experimental approach to 3δ2-pyran. J. Am. Chem. Soc. 124, 287–297 (2002).

  8. 8.

    Hänninen, M. M., Peuronen, A. & Tuononen, H. M. Do extremely bent allenes exist? Chem. Eur. J. 15, 7287–7291 (2009).

  9. 9.

    Daoust, K. J. et al. Strain estimates for small-ring cyclic allenes and butatrienes. J. Org. Chem. 71, 5708–5714 (2009).

  10. 10.

    Johnson, R. P. Strained cyclic cumulenes. Chem. Rev. 89, 1111–1124 (1989).

  11. 11.

    Wentrup, C., Gross, G., Maquestiau, A. & Flammang, R. 1,2-Cyclohexadiene. Angew. Chem. Int. Ed. Engl. 22, 542–543 (1983).

  12. 12.

    Nendel, M., Tolbert, L. M., Herring, L. E., Islam, M. N. & Houk, K. N. Strained allenes as dienophiles in the Diels–Alder reaction: an experimental and computational study. J. Org. Chem. 64, 976–983 (1999).

  13. 13.

    Moore, W. R. & Moser, W. R. The reaction of 6,6-dibromobicyclo[3.1.0]hexane with methyllithium. Evidence for the generation of 1,2-cyclohexadiene and 2,2′-dicyclohexenylene. J. Am. Chem. Soc. 92, 5469–5474 (1970).

  14. 14.

    Quintana, I., Peña, D., Pérez, D. & Guitián, E. Generation and reactivity of 1,2-cyclohexadiene under mild reaction conditions. Eur. J. Org. Chem. 2009, 5519–5524 (2009).

  15. 15.

    Christl, M., Fischer, H., Arnone, M. & Engels, B. 1-Phenyl-1,2-cyclohexadiene: astoundingly high enantioselectivities on generation in a Doering–Moore–Skattebøl reaction and interception by activated olefins. Chem. Eur. J. 15, 11266–11272 (2009).

  16. 16.

    Bottini, A. T., Hilton, L. L. & Plott, J. Relative reactivities of 1,2-cyclohexadiene with conjugated dienes and styrene. Tetrahedron 31, 1997–2001 (1975).

  17. 17.

    Bottini, A. T., Corson, F. P., Fitzgerald, R. & Frost, K. A. II Reactions of 1-halocyclohexenes and methyl substituted 1-halocyclohexenes with potassium t-butoxide. Tetrahedron 28, 4883–4904 (1972).

  18. 18.

    Barber, J. S. et al. Nitrone cycloadditions of 1,2-cyclohexadiene. J. Am. Chem. Soc. 138, 2512–2515 (2016).

  19. 19.

    Lofstrand, V. A. & West, F. G. Efficient trapping of 1,2-cyclohexadienes with 1,3-dipoles. Chem. Eur. J. 22, 10763–10767 (2016).

  20. 20.

    Uyegaki, M., Ito, S., Sugihara, Y. & Murata, I. 1-Benzoxepin and its valence isomers, 4,5-benz-3-oxatricyclo[4.1.0.02,7]heptene and 3,4-benz-2-oxabicyclo[3.2.1]hepta-3,6-diene. Tetrahedron Lett. 49, 4473–4476 (1976).

  21. 21.

    Schreck, M. & Christl, M. Generation and interception of 1-oxo-3,4-cyclohexadiene. Angew. Chem. Int. Ed. 26, 690–692 (1987).

  22. 22.

    Christl, M. & Braun, M. Friesetzung und Abfangreaktionen von 1-oxa-2,3-cyclohexadien. Chem. Ber. 122, 1939–1946 (1989).

  23. 23.

    Ruzziconi, R., Naruse, Y. & Schlosser, M. 1-Oxa-2,3-cyclohexadiene (‘2H-isopyran’): a strained heterocyclic allene undergoing cycloaddition reactions with characteristic typo-, regio-, and stereoselectivities. Tetrahedron 47, 4603–4610 (1991).

  24. 24.

    Jamart-Grégoire, B., Mercier-Girardot, S., Ianelli, S., Nardelli, M. & Caubère, P. Aggregative activation and heterocyclic chemistry. II Nucleophilic condensation of ketone enolates on dehydrodihydropyran generated by complex bases. Tetrahedron 51, 1973–1984 (1995).

  25. 25.

    Christl, M., Braun, M., Wolz, E. & Wagner, W. 1-Phenyl-1-aza-3,4-cyclohexadien, das erste Isodihydropyridin: ertzeugung und abfangreaktionen. Chem. Ber. 127, 1137–1142 (1994).

  26. 26.

    Drinkuth, S., Groetsch, S., Peters, E., Peters, K. & Christl, M. 1-Methyl-1-azacyclohexa-2,3-diene(N–B)borane—generation and interception of an unsymmetrical isodihydropyridine. Eur. J. Org. Chem. 14, 2665–2670 (2001).

  27. 27.

    Elliott, R. L. et al. Cycloadditions of cephalosporins. A comprehensive study of the reaction of cephalosporin triflates with olefins, acetylenes, and dienes to form [2+2] and [4+2] adducts. J. Org. Chem. 62, 4998–5016 (1997).

  28. 28.

    Elliott, R. L., Takle, A. K., Tyler, J. W. & White, J. Cycloadditions of cephalosporins. A general synthesis of novel 2,3-fused cyclobutane and cyclobutene cephems. J. Org. Chem. 58, 6954–6955 (1993).

  29. 29.

    Elliott, R. L. et al. Cycloadditions of cephalosporins. The formation of [4+2] adduct with 5-membered heterocycles. J. Org. Chem. 59, 1606–1607 (1994).

  30. 30.

    Musch, P. W., Scheidel, D. & Engles, B. Comprehensive model for the electronic structures of 1,2,4-cyclohexatriene and related compounds. J. Phys. Chem. A 107, 11223–11230 (2003).

  31. 31.

    Emanuel, C. J. & Shelvin, P. B. Mechanism of the reaction of atomic carbon with pyrrole. Evidence for the intermediacy of a novel dehydropyridinium ylide. J. Am. Chem. Soc. 116, 5991–5992 (1994).

  32. 32.

    Pan, W. & Shelvin, P. B. The chemistry of the N-methyl-3-dehydropyridinium ylid. J. Am. Chem. Soc. 119, 5091–5094 (1997).

  33. 33.

    Pan, W., Balci, M. & Shelvin, P. B. Thiacyclohexatriene–thiopheneylcarbene rearrangement. A sufur analog of the cycloheptatetraene–phenylcarbene rearrangement. J. Am. Chem. Soc. 119, 5035–5036 (1997).

  34. 34.

    Wang, J. & Sheridan, R. S. A singlet aryl-CF3 carbene: 2-benzothienyl(trifluoromethyl)carbene and interconversion with a strained cyclic allene. Org. Lett. 9, 3177–3180 (2007).

  35. 35.

    Schöneboom, J. C., Groetsch, S., Christl, M. & Engles, B. Computational assessment of the electronic structure of 1-azacyclohexa-2,3,5-triene(3δ2-1H-pyridine) and its benzo derivative (3δ2-1H-quinoline) as well as generation and interception of 1-methyl-3δ2-1H-quinoline. Chem. Eur. J. 9, 4641–4649 (2003).

  36. 36.

    Christl, M. & Drinkuth, S. 3δ2-Chromene (2,3-didehydro-2H-1-benzopyran): generation and interception. Eur. J. Org. Chem. 2, 237–241 (1998).

  37. 37.

    Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of structural diversity, substitution pattern, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

  38. 38.

    McMahon, T. C. et al. Generation and regioselective trapping of a 3,4-piperidyne for the synthesis of functionalized heterocycles. J. Am. Chem. Soc. 137, 4082–4085 (2015).

  39. 39.

    Brinck, T. & Linder, M. On the method-dependence of transition state asynchronicity in Diels–Alder reactions. Phys. Chem. Chem. Phys. 15, 5108–5114 (2013).

  40. 40.

    Houk, K. N. & Bickelhaupt, F. M. Analyzing reaction rates with the distortion/interaction-activation strain model. Angew. Chem. Int. Ed. 56, 10070–10086 (2017).

  41. 41.

    Christl, M. et al. The stereochemical course of the generation and interception of a six-membered cyclic allene: 3δ2-1H-napthalene (2,3-didehydro-1,2-dihydronaphthalene). Eur. J. Org. Chem. 2006, 5045–5058 (2006).

  42. 42.

    Carry, J.-C., Brohan, E., Perron, S. & Bardouillet, P.-E. Chiral supercritical fluid chromatography in the preparation of enantiomerically pure (S)-(+)-tert-butyl-3-hydroxyazepane-1-carboxylate. Org. Process Res. Dev. 17, 1568–1571 (2013).

Download references

Acknowledgements

The authors acknowledge the NIH-NIGMS (R01 GM090007 to N.K.G., R01 GM109078 to K.N.H. and F32 GM122245 to E.R.D.), the National Science Foundation (NSF; CHE-1361104 to K.N.H. and DGE-1144087 to M.M.Y.), the University of California, Los Angeles, the UCLA Cota Robles Fellowship Program (M.R.) and the Chemistry–Biology Interface training program (J.S.B., USPHS National Research Service Award 5T32GM008496-20) for financial support. Pier Champagne is acknowledged for computational assistance. These studies were supported by shared instrumentation grants from the NSF (CHE-1048804) and the NIH NCRR (S10RR025631). Computations were performed with resources made available from the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the NSF (OCI-1053575), as well as the UCLA Institute of Digital Research and Education (IDRE).

Author information

Author notes

  1. These authors contributed equally to this work: J. S. Barber, M. M. Yamano.

Affiliations

  1. Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA

    • Joyann S. Barber
    • , Michael M. Yamano
    • , Melissa Ramirez
    • , Evan R. Darzi
    • , Rachel R. Knapp
    • , Fang Liu
    • , K. N. Houk
    •  & Neil K. Garg

Authors

  1. Search for Joyann S. Barber in:

  2. Search for Michael M. Yamano in:

  3. Search for Melissa Ramirez in:

  4. Search for Evan R. Darzi in:

  5. Search for Rachel R. Knapp in:

  6. Search for Fang Liu in:

  7. Search for K. N. Houk in:

  8. Search for Neil K. Garg in:

Contributions

J.S.B., M.M.Y., E.R.D. and R.R.K. designed and performed experiments and analysed experimental data. M.R. and F.L. designed, performed and analysed computational data. K.N.H. and N.K.G. directed the investigations and prepared the manuscript with contributions from all authors. All authors contributed to discussions.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to K. N. Houk or Neil K. Garg.

Supplementary information

  1. Supplementary information

    Experimental procedures, compound characterization data, and data from computational analyses

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41557-018-0080-1