Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Diels–Alder cycloadditions of strained azacyclic allenes


For over a century, the structures and reactivities of strained organic compounds have captivated the chemical community. Whereas triple-bond-containing strained intermediates have been well studied, cyclic allenes have received far less attention. Additionally, studies of cyclic allenes that bear heteroatoms in the ring are scarce. We report an experimental and computational study of azacyclic allenes, which features syntheses of stable allene precursors, the mild generation and Diels–Alder trapping of the desired cyclic allenes, and explanations of the observed regio- and diastereoselectivities. Furthermore, we show that stereochemical information can be transferred from an enantioenriched silyl triflate starting material to a Diels–Alder cycloadduct by way of a stereochemically defined azacyclic allene intermediate. These studies demonstrate that heteroatom-containing cyclic allenes, despite previously being overlooked as valuable synthetic intermediates, may be harnessed for the construction of complex molecular scaffolds bearing multiple stereogenic centres.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Survey of strained cyclic intermediates and focus of present study.
Fig. 2: Comparison of geometry-optimized structures of allenes 13 and 14 (ωB97XD/6-31G(d)).
Fig. 3: Syntheses of silyl triflates 19, 20, 23 and 24.
Fig. 4: Computations provide insight into regio- and diastereoselectivities.
Fig. 5: Attempted transfer of stereochemical information from silyl triflates to cycloadducts via azacyclic allene intermediates.


  1. 1.

    Heaney, H. The benzyne and related intermediates. Chem. Rev. 62, 81–97 (1962).

    Article  CAS  Google Scholar 

  2. 2.

    Tadross, P. M. & Stoltz, B. M. A comprehensive history of arynes in natural product total synthesis. Chem. Rev. 112, 3550–3577 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Dubrovskiy, A. V., Markina, N. A. & Larock, R. C. Use of benzynes for the synthesis of heterocycles. Org. Biomol. Chem. 11, 191–218 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Goetz, A. E., Shah, T. K. & Garg, N. K. Pyridynes and indolynes as building blocks for functionalized heterocycles and natural products. Chem. Commun. 51, 34–45 (2015).

    Article  CAS  Google Scholar 

  5. 5.

    Wittig, G. & Fritze, P. On the intermediate occurrence of 1,2-cyclohexadiene. Angew. Chem. Int Ed. 5, 846 (1966).

    Article  Google Scholar 

  6. 6.

    Angus, R. O., Schmidt, M. W. & Johnson, R. P. Small-ring cyclic cumulenes: theoretical studies of the structure and barrier to inversion in cyclic allenes. J. Am. Chem. Soc. 107, 532–537 (1985).

    Article  CAS  Google Scholar 

  7. 7.

    Engels, B., Schöneboom, J. C., Münster, A. F., Groetsch, S. & Christl, M. Computational assessment of electronic structures of cyclohexa-1,2,4-triene, 1-oxacyclohexa-2,3,5-triene (3δ2-pyran), their benzo derivatives, and cyclohexa-1,2-diene. An experimental approach to 3δ2-pyran. J. Am. Chem. Soc. 124, 287–297 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Hänninen, M. M., Peuronen, A. & Tuononen, H. M. Do extremely bent allenes exist? Chem. Eur. J. 15, 7287–7291 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Daoust, K. J. et al. Strain estimates for small-ring cyclic allenes and butatrienes. J. Org. Chem. 71, 5708–5714 (2009).

    Article  CAS  Google Scholar 

  10. 10.

    Johnson, R. P. Strained cyclic cumulenes. Chem. Rev. 89, 1111–1124 (1989).

    Article  CAS  Google Scholar 

  11. 11.

    Wentrup, C., Gross, G., Maquestiau, A. & Flammang, R. 1,2-Cyclohexadiene. Angew. Chem. Int. Ed. Engl. 22, 542–543 (1983).

    Article  Google Scholar 

  12. 12.

    Nendel, M., Tolbert, L. M., Herring, L. E., Islam, M. N. & Houk, K. N. Strained allenes as dienophiles in the Diels–Alder reaction: an experimental and computational study. J. Org. Chem. 64, 976–983 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Moore, W. R. & Moser, W. R. The reaction of 6,6-dibromobicyclo[3.1.0]hexane with methyllithium. Evidence for the generation of 1,2-cyclohexadiene and 2,2′-dicyclohexenylene. J. Am. Chem. Soc. 92, 5469–5474 (1970).

    Article  CAS  Google Scholar 

  14. 14.

    Quintana, I., Peña, D., Pérez, D. & Guitián, E. Generation and reactivity of 1,2-cyclohexadiene under mild reaction conditions. Eur. J. Org. Chem. 2009, 5519–5524 (2009).

    Article  CAS  Google Scholar 

  15. 15.

    Christl, M., Fischer, H., Arnone, M. & Engels, B. 1-Phenyl-1,2-cyclohexadiene: astoundingly high enantioselectivities on generation in a Doering–Moore–Skattebøl reaction and interception by activated olefins. Chem. Eur. J. 15, 11266–11272 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Bottini, A. T., Hilton, L. L. & Plott, J. Relative reactivities of 1,2-cyclohexadiene with conjugated dienes and styrene. Tetrahedron 31, 1997–2001 (1975).

    Article  CAS  Google Scholar 

  17. 17.

    Bottini, A. T., Corson, F. P., Fitzgerald, R. & Frost, K. A. II Reactions of 1-halocyclohexenes and methyl substituted 1-halocyclohexenes with potassium t-butoxide. Tetrahedron 28, 4883–4904 (1972).

    Article  CAS  Google Scholar 

  18. 18.

    Barber, J. S. et al. Nitrone cycloadditions of 1,2-cyclohexadiene. J. Am. Chem. Soc. 138, 2512–2515 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Lofstrand, V. A. & West, F. G. Efficient trapping of 1,2-cyclohexadienes with 1,3-dipoles. Chem. Eur. J. 22, 10763–10767 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Uyegaki, M., Ito, S., Sugihara, Y. & Murata, I. 1-Benzoxepin and its valence isomers, 4,5-benz-3-oxatricyclo[,7]heptene and 3,4-benz-2-oxabicyclo[3.2.1]hepta-3,6-diene. Tetrahedron Lett. 49, 4473–4476 (1976).

    Article  Google Scholar 

  21. 21.

    Schreck, M. & Christl, M. Generation and interception of 1-oxo-3,4-cyclohexadiene. Angew. Chem. Int. Ed. 26, 690–692 (1987).

    Article  Google Scholar 

  22. 22.

    Christl, M. & Braun, M. Friesetzung und Abfangreaktionen von 1-oxa-2,3-cyclohexadien. Chem. Ber. 122, 1939–1946 (1989).

    Article  CAS  Google Scholar 

  23. 23.

    Ruzziconi, R., Naruse, Y. & Schlosser, M. 1-Oxa-2,3-cyclohexadiene (‘2H-isopyran’): a strained heterocyclic allene undergoing cycloaddition reactions with characteristic typo-, regio-, and stereoselectivities. Tetrahedron 47, 4603–4610 (1991).

    Article  CAS  Google Scholar 

  24. 24.

    Jamart-Grégoire, B., Mercier-Girardot, S., Ianelli, S., Nardelli, M. & Caubère, P. Aggregative activation and heterocyclic chemistry. II Nucleophilic condensation of ketone enolates on dehydrodihydropyran generated by complex bases. Tetrahedron 51, 1973–1984 (1995).

    Article  Google Scholar 

  25. 25.

    Christl, M., Braun, M., Wolz, E. & Wagner, W. 1-Phenyl-1-aza-3,4-cyclohexadien, das erste Isodihydropyridin: ertzeugung und abfangreaktionen. Chem. Ber. 127, 1137–1142 (1994).

    Article  CAS  Google Scholar 

  26. 26.

    Drinkuth, S., Groetsch, S., Peters, E., Peters, K. & Christl, M. 1-Methyl-1-azacyclohexa-2,3-diene(N–B)borane—generation and interception of an unsymmetrical isodihydropyridine. Eur. J. Org. Chem. 14, 2665–2670 (2001).

    Article  Google Scholar 

  27. 27.

    Elliott, R. L. et al. Cycloadditions of cephalosporins. A comprehensive study of the reaction of cephalosporin triflates with olefins, acetylenes, and dienes to form [2+2] and [4+2] adducts. J. Org. Chem. 62, 4998–5016 (1997).

    Article  CAS  Google Scholar 

  28. 28.

    Elliott, R. L., Takle, A. K., Tyler, J. W. & White, J. Cycloadditions of cephalosporins. A general synthesis of novel 2,3-fused cyclobutane and cyclobutene cephems. J. Org. Chem. 58, 6954–6955 (1993).

    Article  CAS  Google Scholar 

  29. 29.

    Elliott, R. L. et al. Cycloadditions of cephalosporins. The formation of [4+2] adduct with 5-membered heterocycles. J. Org. Chem. 59, 1606–1607 (1994).

    Article  CAS  Google Scholar 

  30. 30.

    Musch, P. W., Scheidel, D. & Engles, B. Comprehensive model for the electronic structures of 1,2,4-cyclohexatriene and related compounds. J. Phys. Chem. A 107, 11223–11230 (2003).

    Article  CAS  Google Scholar 

  31. 31.

    Emanuel, C. J. & Shelvin, P. B. Mechanism of the reaction of atomic carbon with pyrrole. Evidence for the intermediacy of a novel dehydropyridinium ylide. J. Am. Chem. Soc. 116, 5991–5992 (1994).

    Article  CAS  Google Scholar 

  32. 32.

    Pan, W. & Shelvin, P. B. The chemistry of the N-methyl-3-dehydropyridinium ylid. J. Am. Chem. Soc. 119, 5091–5094 (1997).

    Article  CAS  Google Scholar 

  33. 33.

    Pan, W., Balci, M. & Shelvin, P. B. Thiacyclohexatriene–thiopheneylcarbene rearrangement. A sufur analog of the cycloheptatetraene–phenylcarbene rearrangement. J. Am. Chem. Soc. 119, 5035–5036 (1997).

    Article  CAS  Google Scholar 

  34. 34.

    Wang, J. & Sheridan, R. S. A singlet aryl-CF3 carbene: 2-benzothienyl(trifluoromethyl)carbene and interconversion with a strained cyclic allene. Org. Lett. 9, 3177–3180 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Schöneboom, J. C., Groetsch, S., Christl, M. & Engles, B. Computational assessment of the electronic structure of 1-azacyclohexa-2,3,5-triene(3δ2-1H-pyridine) and its benzo derivative (3δ2-1H-quinoline) as well as generation and interception of 1-methyl-3δ2-1H-quinoline. Chem. Eur. J. 9, 4641–4649 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Christl, M. & Drinkuth, S. 3δ2-Chromene (2,3-didehydro-2H-1-benzopyran): generation and interception. Eur. J. Org. Chem. 2, 237–241 (1998).

    Article  Google Scholar 

  37. 37.

    Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of structural diversity, substitution pattern, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    McMahon, T. C. et al. Generation and regioselective trapping of a 3,4-piperidyne for the synthesis of functionalized heterocycles. J. Am. Chem. Soc. 137, 4082–4085 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Brinck, T. & Linder, M. On the method-dependence of transition state asynchronicity in Diels–Alder reactions. Phys. Chem. Chem. Phys. 15, 5108–5114 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Houk, K. N. & Bickelhaupt, F. M. Analyzing reaction rates with the distortion/interaction-activation strain model. Angew. Chem. Int. Ed. 56, 10070–10086 (2017).

    Article  CAS  Google Scholar 

  41. 41.

    Christl, M. et al. The stereochemical course of the generation and interception of a six-membered cyclic allene: 3δ2-1H-napthalene (2,3-didehydro-1,2-dihydronaphthalene). Eur. J. Org. Chem. 2006, 5045–5058 (2006).

    Article  CAS  Google Scholar 

  42. 42.

    Carry, J.-C., Brohan, E., Perron, S. & Bardouillet, P.-E. Chiral supercritical fluid chromatography in the preparation of enantiomerically pure (S)-(+)-tert-butyl-3-hydroxyazepane-1-carboxylate. Org. Process Res. Dev. 17, 1568–1571 (2013).

    Article  CAS  Google Scholar 

Download references


The authors acknowledge the NIH-NIGMS (R01 GM090007 to N.K.G., R01 GM109078 to K.N.H. and F32 GM122245 to E.R.D.), the National Science Foundation (NSF; CHE-1361104 to K.N.H. and DGE-1144087 to M.M.Y.), the University of California, Los Angeles, the UCLA Cota Robles Fellowship Program (M.R.) and the Chemistry–Biology Interface training program (J.S.B., USPHS National Research Service Award 5T32GM008496-20) for financial support. Pier Champagne is acknowledged for computational assistance. These studies were supported by shared instrumentation grants from the NSF (CHE-1048804) and the NIH NCRR (S10RR025631). Computations were performed with resources made available from the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the NSF (OCI-1053575), as well as the UCLA Institute of Digital Research and Education (IDRE).

Author information




J.S.B., M.M.Y., E.R.D. and R.R.K. designed and performed experiments and analysed experimental data. M.R. and F.L. designed, performed and analysed computational data. K.N.H. and N.K.G. directed the investigations and prepared the manuscript with contributions from all authors. All authors contributed to discussions.

Corresponding authors

Correspondence to K. N. Houk or Neil K. Garg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims inpublished maps and institutional affiliations.

Supplementary information

Supplementary information

Experimental procedures, compound characterization data, and data from computational analyses

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barber, J.S., Yamano, M.M., Ramirez, M. et al. Diels–Alder cycloadditions of strained azacyclic allenes. Nature Chem 10, 953–960 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing